The 1999 Regional Haze Rule provides a context for this review of visibility, the science that describes it, and the use of that science in regulatory guidance. The scientific basis for the 1999 regulation is adequate. The deciview metric that tracks progress is an imperfect but objective measure of what people see near the prevailing visual range. The definition of natural visibility conditions is adequate for current planning, but it will need to be refined as visibility improves. Emissions from other countries will set achievable levels above those produced by natural sources. Some natural events, notably dust storms and wildfires, are episodic and cannot be represented by annual average background values or emission estimates. Sulfur dioxide (SO2) emission reductions correspond with lower sulfate (SO4(2-)) concentrations and visibility improvements in the regions where these have occurred. Non-road emissions have been growing more rapidly than emissions from other sources, which have remained stable or decreased since 1970. Simpler models representing transport, limiting precursor pollutants, and gas-to-particle equilibrium should be used to understand where and when emission reductions will be effective, rather than large complex models that have insufficient input and validation measurements. Examples of model-based source attribution show large differences among estimates from various modeling systems and with ambient measurements.
Charring of organic carbon (OC) during thermal/optical analysis is monitored by the change in a laser signal either reflected from or transmitted through a filter punch. Elemental carbon (EC) in suspended particulate matter collected on quartz-fiber filters is defined as the carbon that evolves after the detected optical signal attains the value it had prior to commencement of heating, with the rest of the carbon classified as organic carbon (OC). Heretofore, operational definitions of EC were believed to be caused by different temperature protocols rather than by the method of monitoring charring. This work demonstrates that thermal/ optical reflectance (TOR) corrections yield equivalent OC/ EC splits for widely divergent temperature protocols. EC results determined by simultaneous thermal/optical transmittance (TOT) corrections are 30% lower than TOR for the same temperature protocol and 70-80% lower than TOR for a protocol with higher heating temperatures and shorter residence times. This is true for 58 urban samples from Fresno, CA, as well as for 30 samples from the nonurban IMPROVE network that are individually dominated by wildfire, vehicle exhaust, secondary organic aerosol, and calcium carbonate contributions. Visual examination of filter darkening at different temperature stages shows that substantial charring takes place within the filter, possibly due to adsorbed organic gases or diffusion of vaporized particles. The filter transmittance is more influenced by the within-filter char, whereas the filter reflectance is dominated by charring of the near-surface deposit that appears to evolve first when oxygen is added to helium in the analysis atmosphere for these samples. The amounts of charred OC (POC) and EC are also estimated from incremental absorbance. Small amounts of POC are found to dominate the incremental absorbance. EC estimated from absorbance are found to agree better with EC from the reflectance charring correction than with EC from the transmittance charring correction.
Thermally derived carbon fractions including organic carbon (OC) and elemental carbon (EC) have been reported for the U.S. Interagency Monitoring of PROtected Visual Environments (IMPROVE) network since 1987 and have been found useful in source apportionment studies and to evaluate quartz-fiber filter adsorption of organic vapors. The IMPROVE_A temperature protocol defines temperature plateaus for thermally derived carbon fractions of 140°C for OC1, 280°C for OC2, 480°C for OC3, and 580°C for OC4 in a helium (He) carrier gas and 580°C for EC1, 740°C for EC2, and 840°C for EC3 in a 98% He/2% oxygen (O 2 ) carrier gas. These temperatures differ from those used previously because new hardware used for the IMPROVE thermal/optical reflectance (IMPROVE_TOR) protocol better represents the sample temperature than did the old hardware. A newly developed temperature calibration method demonstrates that these temperatures better represent sample temperatures in the older units used to quantify IMPROVE carbon fractions from 1987 through 2004. Only the thermal fractions are affected by changes in temperature. The OC and EC by TOR are insensitive to the change in temperature protocol, and therefore the long-term consistency of the IMPROVE database is conserved. A method to detect small quantities of O 2 in the pure He carrier gas shows that O 2 levels above 100 ppmv also affect the comparability of thermal carbon fractions but have little effect on the IMPROVE_TOR split between OC and EC.
Residential wood combustion emissions were analyzed to determine emission rates and to develop chemical emissions profiles that represent the appliances and woods typically used in wood-burning communities. Over 350 elements, inorganic compounds, and organic compounds were quantified. A range of 4-9 g/kg dry fuel of particulate matter (<2.5 µm) and 5-22 g/kg volatile organic compounds were observed. Samples were collected using a dilution stack sampler equipped with a 2.5-µm particle selective cyclone. Emissions were diluted 20-70 times, cooled to ambient temperature, and allowed 80 s for condensation prior to collection. Wood type, wood moisture, burn rate, and fuel load were varied for different experiments. Fine particle and semivolatile organic compounds were collected on filter/PUF/XAD/PUF cartridges. Inorganic samples and mass were collected on Teflon and quartz filters. Volatile organic carbon compounds were trapped with Tenax (C 8 -C 20 ), canister (C 2 -C 12 ), and 2,4-dinitrophenylhydrazine impregnated cartridges (carbonyl compounds). Analysis of particle and semivolatile organic species was conducted by gas chromatography/mass spectrometry. Teflon filters were analyzed for mass by gravimetry, trace elements were analyzed by X-ray fluorescence, and ammonium was analyzed by automated colorimetry. Quartz filters were analyzed for organic and elemental carbon by thermal/optical reflectance, and ions were analyzed by ion chromatography. Select quartz filters were analyzed by accelerator mass spectrometry for carbon-12 and carbon-14 abundance. Canister and Tenax samples were analyzed by gas chromatography with a flame ionization detector, and carbonyl compounds were analyzed by high-performance liquid chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.