Realization of one-chip, ultra-large-area, coherent semiconductor lasers has been one of the ultimate goals of laser physics and photonics for decades. Surface-emitting lasers with two-dimensional photonic crystal resonators, referred to as photonic-crystal surface-emitting lasers (PCSELs), are expected to show promise for this purpose. However, neither the general conditions nor the concrete photonic crystal structures to realize 100-W-to-1-kW-class single-mode operation in PCSELs have yet to be clarified. Here, we analytically derive the general conditions for ultra-large-area (3~10 mm) single-mode operation in PCSELs. By considering not only the Hermitian but also the non-Hermitian optical couplings inside PCSELs, we mathematically derive the complex eigenfrequencies of the four photonic bands around the Γ point as well as the radiation constant difference between the fundamental and higher-order modes in a finite-size device. We then reveal concrete photonic crystal structures which allow the control of both Hermitian and non-Hermitian coupling coefficients to achieve 100-W-to-1-kW-class single-mode lasing.
Realizing large-scale single-mode, high-power, high-beam-quality semiconductor lasers, which rival (or even replace) bulky gas and solid-state lasers, is one of the ultimate goals of photonics and laser physics. Conventional high-power semiconductor lasers, however, inevitably suffer from poor beam quality owing to the onset of many-mode oscillation1,2, and, moreover, the oscillation is destabilized by disruptive thermal effects under continuous-wave (CW) operation3,4. Here, we surmount these challenges by developing large-scale photonic-crystal surface-emitting lasers with controlled Hermitian and non-Hermitian couplings inside the photonic crystal and a pre-installed spatial distribution of the lattice constant, which maintains these couplings even under CW conditions. A CW output power exceeding 50 W with purely single-mode oscillation and an exceptionally narrow beam divergence of 0.05° has been achieved for photonic-crystal surface-emitting lasers with a large resonant diameter of 3 mm, corresponding to over 10,000 wavelengths in the material. The brightness, a figure of merit encapsulating both output power and beam quality, reaches 1 GW cm−2 sr−1, which rivals those of existing bulky lasers. Our work is an important milestone toward the advent of single-mode 1-kW-class semiconductor lasers, which are expected to replace conventional, bulkier lasers in the near future.
Mechanical-free, high-power, high-beam-quality two-dimensional (2D) beam scanning lasers are in high demand for various applications including sensing systems for smart mobility, object recognition systems, and adaptive illuminations. Here, we propose and demonstrate the concept of dually modulated photonic crystals to realize such lasers, wherein the positions and sizes of the photonic-crystal lattice points are modulated simultaneously. We show using nano-antenna theory that this photonic nanostructure is essential to realize 2D beam scanning lasers with high output power and high beam quality. We also fabricate an on-chip, circuit-driven array of dually modulated photonic-crystal lasers with a 10 × 10 matrix configuration having 100 resolvable points. Our device enables the scanning of laser beams over a wide range of 2D directions in sequence and in parallel, and can be flexibly designed to meet application-specific demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.