We investigated the ability of overexpression of the c-myc proto-oncogene to potentiate in vitro transformation by model chemical carcinogens. A mouse c-myc gene was introduced to C3H 10T1/2 and Rat 6 embryo fibroblast cell lines via a retroviral vector containing the gene for neomycin resistance. Our present work extends previous findings by showing that individual vectored C3H 10T1/2 clones have enhanced (two-fold to sevenfold) sensitivity to benzo[a]pyrene (BP) and N-methyl-N-nitro-N'-nitrosoguanidine (MNNG). Rat 6 clones acquiring the c-myc gene display various degrees of altered morphology. They form orderly but densely packed cells, grow to higher saturation density, and yield microcolonies in soft agar. The degree of altered growth properties is directly correlated with the level of c-myc expression. Transient exposure of c-myc-expressing clones to BP and MNNG induced the formation of distinct, large colonies in soft agar, whereas the untreated cells formed microcolonies and the parental Rat 6 cells remained single cells in soft agar. We also demonstrated that the degree of responsiveness to chemical carcinogens of the clones correlates with their ability to form microcolonies in soft agar. These cells overexpressing c-myc may be used as a model system to study the interaction between oncogenes and chemical carcinogens in the process of multistage carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.