Biomineralization is a process in which organic matter and inorganic matter combine with each other under the regulation of living organisms. Because of the biomineralization-induced super survivability and retentivity, biomineralization has attracted special attention from biologists, archaeologists, chemists, and materials scientists for its tracer and transformation effect in rock evolution study and nanomaterials synthesis. However, controlling the biomineralization process in vitro as precisely as intricate biology systems still remains a challenge. In this review, the regulating roles of temperature, pH, and organics in biominerals forming process were reviewed. The artificially introducing and utilization of biomineralization, the bio-inspired synthesis of nanomaterials, in biomedical fields was further discussed, mainly in five potential fields: drug and cell-therapy engineering, cancer/tumor target engineering, bone tissue engineering, and other advanced biomedical engineering. This review might help other interdisciplinary researchers to bionic-manufacture biominerals in molecular-level for developing more applications of biomineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.