Properties of solitary waves propagating in a two-layer fluid are investigated comparing experiments and theory. In the experiments the velocity field induced by the waves, the propagation speed and the wave shape are quite accurately measured using particle tracking velocimetry (PTV) and image analysis. The experiments are calibrated with a layer of fresh water above a layer of brine. The depth of the brine is 4.13 times the depth of the fresh water. Theoretical results are given for this depth ratio, and, in addition, in a few examples for larger ratios, up to 100:1. The wave amplitudes in the experiments range from a small value up to almost maximal amplitude. The thickness of the pycnocline is in the range of approximately 0.13-0.26 times the depth of the thinner layer. Solitary waves are generated by releasing a volume of fresh water trapped behind a gate. By careful adjustment of the length and depth of the initial volume we always generate a single solitary wave, even for very large volumes. The experiments are very repeatable and the recording technique is very accurate. The error in the measured velocities non-dimensionalized by the linear long wave speed is less than about 7-8% in all cases. The experiments are compared with a fully nonlinear interface model and weakly nonlinear Korteweg-de Vries (KdV) theory. The fully nonlinear model compares excellently with the experiments for all quantities measured. This is true for the whole amplitude range, even for a pycnocline which is not very sharp. The KdV theory is relevant for small wave amplitude but exhibit a systematic deviation from the experiments and the fully nonlinear theory for wave amplitudes exceeding about 0.4 times the depth of the thinner layer. In the experiments with the largest waves, rolls develop behind the maximal displacement of the wave due to the Kelvin-Helmholtz instability. The recordings enable evaluation of the local Richardson number due to the flow in the pycnocline. We find that stability or instability of the flow occurs in approximate agreement with the theorem of Miles and Howard.
Solitary waves propagating horizontally in a stratified fluid are investigated. The fluid has a shallow layer with linear stratification and a deep layer with constant density. The investigation is both experimental and theoretical. Detailed measurements of the velocities induced by the waves are facilitated by particle tracking velocimetry (PTV) and particle image velocimetry (PIV). Particular attention is paid to the role of wave breaking which is observed in the experiments. Incipient breaking is found to take place for moderately large waves in the form of the generation of vortices in the leading part of the waves. The maximal induced fluid velocity close to the free surface is then about 80% of the wave speed, and the wave amplitude is about half of the depth of the stratified layer. Wave amplitude is defined as the maximal excursion of the stratified layer. The breaking increases in power with increasing wave amplitude. The magnitude of the induced fluid velocity in the large waves is found to be approximately bounded by the wave speed. The breaking introduces a broadening of the waves. In the experiments a maximal amplitude and speed of the waves are obtained. A theoretical fully nonlinear two-layer model is developed in parallel with the experiments. In this model the fluid motion is assumed to be steady in a frame of reference moving with the wave. The Brunt-Väisälä frequency is constant in the layer with linear stratification and zero in the other. A mathematical solution is obtained by means of integral equations. Experiments and theory show good agreement up to breaking. An approximately linear relationship between the wave speed and amplitude is found both in the theory and the experiments and also when wave breaking is observed in the latter. The upper bound of the fluid velocity and the broadening of the waves, observed in the experiments, are not predicted by the theory, however. There was always found to be excursion of the solitary waves into the layer with constant density, irrespective of the ratio between the depths of the layers.
The stability properties of 24 experimentally generated internal solitary waves (ISWs) of extremely large amplitude, all with minimum Richardson number less than 1/4, are investigated. The study is supplemented by fully nonlinear calculations in a three-layer fluid. The waves move along a linearly stratified pycnocline (depth h2) sandwiched between a thin upper layer (depth h1) and a deep lower layer (depth h3), both homogeneous. In particular, the wave-induced velocity profile through the pycnocline is measured by particle image velocimetry (PIV) and obtained in computation. Breaking ISWs were found to have amplitudes (a1) in the range $a_1\,{>}\,2.24\sqrt{h_1h_2}(1+h_2/h_1)$, while stable waves were on or below this limit. Breaking ISWs were investigated for 0.27 < h2/h1 < 1 and 4.14 < h3/(h1 + h2) < 7.14 and stable waves for 0.36 < h2/h1 < 3.67 and 3.22 < h3/(h1 + h2) < 7.25. Kelvin–Helmholtz-like billows were observed in the breaking cases. They had a length of 7.9h2 and a propagation speed 0.09 times the wave speed. These measured values compared well with predicted values from a stability analysis, assuming steady shear flow with U(z) and ρ(z) taken at the wave maximum (U(z) horizontal velocity profile, ρ(z) density along the vertical z). Only unstable modes in waves of sufficient strength have the chance to grow sufficiently fast to develop breaking: the waves that broke had an estimated growth (of unstable modes) more than 3.3–3.7 times than in the strongest stable case. Evaluation of the minimum Richardson number (Rimin, in the pycnocline), the horizontal length of a pocket of possible instability, with wave-induced Ri < 14, (Lx) and the wavelength (λ), showed that all measurements fall within the range Rimin = −0.23Lx/λ + 0.298 ± 0.016 in the (Lx/λ, Rimin)-plane. Breaking ISWs were found for Lx/λ > 0.86 and stable waves for Lx/λ < 0.86. The results show a sort of threshold-like behaviour in terms of Lx/λ. The results demonstrate that the breaking threshold of Lx/λ = 0.86 was sharper than one based on a minimum Richardson number and reveal that the Richardson number was found to become almost antisymmetric across relatively thick pycnoclines, with the minimum occurring towards the top part of the pycnocline.
A fast computational method for fully nonlinear non-overturning water waves is derived in two and three dimensions. A corresponding time-stepping scheme is developed in the two-dimensional case. The essential part of the method is a fast converging iterative solution procedure of the Laplace equation. One part of the solution is obtained by fast Fourier transform, while another part is highly nonlinear and consists of integrals with kernels that decay quickly in space. The number of operations required is asymptotically O(N log N), where N is the number of nodes at the free surface. While any accuracy of the computations is achieved by a continued iteration of the equations, one iteration is found to be sufficient for practical computations, while maintaining high accuracy. The resulting explicit approximation of the scheme is tested in two versions. Simulations of nonlinear wave fields with wave slope even up to about unity compare very well with reference computations. The numerical scheme is formulated in such a way that aliasing terms are partially or completely avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.