This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
The kinetics of contractions and Ca(2+) transients are slowed in myocytes from failing hearts. The mechanisms accounting for these abnormalities remain unclear. Myocardial infarction (MI) was produced by ligation of the circumflex artery in rabbits. We used confocal microscopy to record spatially resolved Ca(2+) transients during field stimulation in left ventricular (LV) myocytes from control and infarcted hearts (3 weeks). Compared with controls, Ca(2+) transients in myocytes adjacent to the infarct had lower peak amplitudes and prolonged time courses. Control myocytes showed relatively uniform changes in [Ca(2+)] throughout the cell after electrical stimulation. In contrast, in MI myocytes [Ca(2+)] increased inhomogeneously and localized increases in [Ca(2+)] occurred throughout the rising and falling phases of the Ca(2+) transient. Ca(2+) content of the sarcoplasmic reticulum did not differ between MI and control myocytes. Peak L-type Ca(2+) current density was reduced in MI myocytes. The macroscopic gain function was not different in control and MI myocytes when calculated as the amplitude of the Ca(2+) transient/peak I:(Ca). However, when calculated as the peak rate of rise of the Ca(2+) transient/peak I:(Ca), the gain function was modestly decreased in the MI myocytes. Application of isoproterenol (100 nmol/L) improved the synchronization of Ca(2+) release in MI myocytes at both 0.5 and 1 Hz. The poorly coordinated production of Ca(2+) sparks in myocytes from infarcted rabbit hearts likely contributes to the diminished and slowed macroscopic Ca(2+) transient. These abnormalities can be largely overcome when phosphorylation of Ca(2+) cycling proteins is enhanced by ss-adrenergic stimulation.
Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo‐3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species. Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1·4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L‐type calcium channels with the changes in driving force for calcium entry during the action potential. When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to ‘all‐or‐none’ behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation‐contraction coupling. A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal‐to‐noise levels.
Calcium homeostasis in cardiac myocytes results from the integrated function of transsarcolemmal Ca2+ influx and efflux pathways modulated by membrane potential and from intracellular Ca2+ uptake and release caused predominantly by SR function. These processes can be importantly altered in different disease states as well as by pharmacological agents, and the resulting changes in systolic and diastolic [Ca2+]i can cause clinically significant alterations in contraction and relaxation of the heart. It may be anticipated that a rapid increase in our understanding of the pathophysiology of Ca2+ homeostasis in cardiac myocytes will be forthcoming as the powerful new tools of molecular and structural biology are used to investigate the regulation of Ca2+ transport systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.