Responses of net photosynthesis, dark respiration, photorespiration, transpiration, and stomatal conductance to irradiance, temperature, leaf-to-air vapor density difference (VDD), and plant water stress were examined in two Populus trichocarpa clones (one from a moist, coastal climate in western Washington and one from a dry, continental climate in eastern Washington), one P. deltoides clone, and two P. trichocarpa x P. deltoides clones. Light saturation of photosynthesis in greenhouse-grown trees occurred at about 800 micromol m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern Washington ecotype of P. trichocarpa, but at about 600 micromol m(-2) s(-1) for the western Washington ecotype of P. trichocarpa. Average net photosynthesis (at saturating irradiance and the optimum temperature of 25 degrees C) was 20.7, 18.8, 18.2 and 13.4 micromol CO(2) m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern and western Washington clones of P. trichocarpa, respectively. In all clones, net photosynthesis decreased about 14% as VDD increased from 3 to 18 g H(2)O m(-3). Stomatal conductance decreased sharply with decreasing xylem pressure potential (XPP) in all clones except the western Washington clone of P. trichocarpa. Stomata in this clone were insensitive to changes in XPP and did not control water loss. Complete stomatal closure (stomatal conductance < 0.05 cm s(-1)) occurred at about -2.0 MPa in the eastern Washington clone of P. trichocarpa and around -1.25 MPa in the P. deltoides and P. trichocarpa x P. deltoides clones. Transpiration rates were highest in the P. trichocarpa x P. deltoides clone and lowest in the western Washington clone of P. trichocarpa. The P. deltoides clone and eastern Washington clone of P. trichocarpa had the highest water use efficiency (WUE) and the western Washington clone of P. trichocarpa had the lowest WUE. The hybrids were intermediate. It was concluded that: (1) gas exchange characteristics of eastern and western Washington clones of P. trichocarpa reflected adaptation to their native environment; (2) crossing the western Washington clone of P. trichocarpa with the more drought resistant P. deltoides clone produced plants better adapted to the interior Pacific Northwest climate, although the stomatal response to soil water deficits in the hybrid was conservative compared with that of the eastern Washington clone of P. trichocarpa; and (3) introducing eastern Washington clones of black cottonwood into breeding programs is likely to yield lines with favorable growth characteristics combined with enhanced WUE and adaptation to soil water deficits.
We investigated foliar phenolic composition of field- and greenhouse-grown Populus trichocarpa Torr. & A. Gray (black cottonwood) ramets subjected to near zero (0x), ambient (1x) or twice ambient (2x) concentrations of biologically effective ultraviolet-B (UV-B) radiation. After a 3-month treatment period, several age classes of foliage samples were harvested and the phenolic compounds extracted, separated by high performance liquid chromatography and identified and quantified by diode-array spectrometry and mass spectrometry. Foliar phenolic concentration was greater in 1x- and 2x-treated tissue than in 0x-treated tissue. Phenolic compounds that increased in response to UV-B radiation were predominantly flavonoids, primarily quercetin and kaempferol glycosides. Enhancement of UV-B radiation from 1x to 2x ambient concentration did not result in further flavonoid accumulation in either greenhouse or field ramets; however, a non-flavonoid phenolic glycoside, salicortin, increased in response to an increase in UV-B radiation from 1x to 2x ambient concentration. Increased salicortin concentrations accounted for at least 30-40% of the total (5%) increase in UV-absorption potential of 2x-treated tissue. Because salicortin and other salicylates are important in plant-herbivore-predator relationships, these increases are discussed in the context of collateral feeding studies. We conclude that enhanced solar UV-B radiation may significantly alter trophic structure in some ecosystems by stimulating specific phenolic compounds.
Insect damage on hybrid poplars grown from rooted tip cuttings was simulated to assess potential growth impact under nursery conditions. Four experiments were conducted at Rhinelander, Wisconsin, from June 1975 through August 1977. Partial defoliations in several patterns were tested both early and late in the growing season. Basal injury was also investigated.Whereas defoliations of 40% caused negligible growth impact, defoliations of 75 to 80% reduced growth by about 20%. The 75% defoliations did not differ significantly according to distribution in the crown. Timing of defoliations was not significant as a main effect. Faster growing clones suffered greater growth reduction in one experiment where cultural regime was not so intensive. Basal injury did not produce significant impacts unless it was severe enough to weaken the stem almost to the point of collapse.Results indicate that young and vigorous rooted tip cuttings have substantial reserve photosynthetic capacity. Even heavy defoliations do not counterbalance gains that can be realized by genetic selection for rapid growth.
To assess the potential impact of enhanced ultraviolet-B (UV-B) radiation over two trophic levels, we monitored key leaf chemical constituents and related changes in their concentration to dietary preference and performance of a specialist insect herbivore. Ramets of Populus trichocarpa Torr. & Gray (black cottonwood) were subjected to near zero (0X), ambient (1X) or twice ambient (2X) doses of biologically effective UV-B radiation (UV-B(BE)) in a randomized block design using either a square-wave (greenhouse) or a modulated (field) lamp system. After a 3-month treatment period, apparent photosynthesis was determined in situ and plants were harvested for biomass determination. Leaf subsamples were analyzed for nitrogen, sulfur, chlorophylls, UV-absorbing compounds and protein-precipitable tannins. Effects of changes in these constituents on feeding by Chrysomela scripta Fab. (cottonwood leaf beetle) were determined by (1) adult feeding preference trials and (2) larval growth rate trials. Enhanced UV-B(BE) radiation had minimal effects on photosynthesis, growth, leaf area and biomass distribution. In the greenhouse study, concentrations of foliar nitrogen and chlorophylls increased, but tannins decreased slightly in young leaves exposed to enhanced UV-B(BE) radiation. There were no significant effects on these parameters in the field study. The concentration of methanol-extractable foliar phenolics increased in plants grown with enhanced UV-B(BE) radiation in both the greenhouse and field studies. In feeding preference trials, adult C. scripta chose 2X-treated tissue almost twice as often as 1X-treated tissue in both greenhouse and field studies, but differences were not statistically significant (P = 0.12). In the field study, first instar larvae grown to adult eclosion on 2X-treated leaves had a significant (P < 0.001) reduction in consumption efficiency compared with larvae grown on 1X-treated leaves. We conclude that effects of enhanced UV-B(BE) radiation at the molecular-photochemical level can elicit significant responses at higher trophic levels that may ultimately affect forest canopy structure, plant competitive interactions and ecosystem-level processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.