Aim We quantify the elevational patterns of species richness for all vascular plants and some functional and taxonomic groups on a regional scale on a tropical mountain and discuss some possible causes for the observed patterns. Location Mount Kinabalu, Sabah, Borneo. Methods A data base containing elevational information on more than 28,000 specimens was analysed for vascular plant distribution, taking into account sampling effort. The total species richness pattern was estimated per 300‐m elevational interval by rarefaction analyses. The same methods were also applied to quantify species richness patterns of trees, epiphytes, and ferns. Results Total species richness has a humped relationship with elevation, and a maximum species richness in the interval between 900 and 1200 m. For ferns and epiphytes the maximum species richness is found at slightly higher elevations, whereas tree species did not have a statistically significant peak in richness above the lowest interval analysed. Main conclusions For the first time a rigorous estimate of an elevational pattern in species richness of the whole vascular plant flora of a tropical mountain has been quantified. The pattern observed depends on the group studied. We discuss the differences between the groups and compare the results with previous studies of elevational patterns of species richness from other tropical areas. We also discuss the methods used to quantify the richness pattern and conclude that rarefaction gives an appropriate estimate of the species richness pattern.
The genus Rqfflesia includes about 13 species of parasitic flowering plants, among which are the largest known flowers. The flower with subtending scales is the only part of the plant external to the host and is produced solitary on roots (rarely stems) of the genus Tetrastigma (Vitaceae). Field studies were made of the pollination process in R. pricei, a species endemic to the Crocker Range in the Malaysian state of Sabah (northern Borneo). Pollination is mediated by carrion (bluebottle) flies of the genera Lucilla and Chrysomya. Experimental data indicate that both visual and olfactory cues are important in attracting flies to flowers. Flies (mostly female L. papuensis) obtain loads of the viscous liquid pollen matrix by visiting male flowers and entering anther grooves on the central column of the flower, precisely guided by ridges armed with hairs that force the fly into a position in which the pollen is positioned on the dorsal part of the thorax. “Windows” on the inside of the perigone diaphragm apparently help orient their flight inside flowers. Pollen‐loaded flies visiting female flowers may enter the infradiscoidal sulcus formed by a broad ring of stigmatic tissue above and the expanded base of the column below. On entering the sulcus the fly is wedged in so tightly that pollen is rubbed off the thorax onto the stigma. Only large flies could be effective in picking up pollen from male flowers and transferring it to female flowers. The pollination syndrome is sapromyophily, in which the flower closely parallels trap flowers of several other plant families, although it is not a trap. The flower provides no reward for pollinators but deceives them by an apparent offering of food and possibly brood place. Rafflesia plants are extremely rare, perhaps in part because of infrequency of pollination, which requires neighboring male and female flowers simultaneously in bloom.
Aim In simulation exercises, mid-domain peaks in species richness arise as a result of the random placement of modelled species ranges within simulated geometric constraints. This has been called the mid-domain effect (MDE). Where close correspondence is found between such simulations and empirical data, it is not possible to reject the hypothesis that empirical species richness patterns result from the MDE rather than being the outcome (wholly or largely) of other factors. To separate the influence of the MDE from other factors we therefore need to evaluate variables other than species richness. The distribution of range sizes gives different predictions between models including the MDE or not. Here, we produce predictions for species richness and distribution of range sizes from one model without the MDE and from two MDE models: a classical MDE model encompassing only species with their entire range within the domain (rangerestricted MDE), and a model encompassing all species with the theoretical midpoint within the domain (midpoint-restricted MDE). These predictions are compared with observations from the elevational pattern of range-size distributions and species richness of vascular plants. Location Mount Kinabalu, Borneo.Methods The data set analysed comprises more than 28,000 plant specimens with information on elevation. Species ranges are simulated with various assumptions for the three models, and the species simulated are subsequently subjected to a sampling that simulates the actual collection of species on Mount Kinabalu. The resulting pattern of species richness and species range-size distributions are compared with the observed pattern. ResultsThe comparison of simulated and observed patterns indicates that an underlying monotonically decreasing trend in species richness with elevation is essential to explain fully the observed pattern of richness and range size. When the underlying trend is accounted for, the MDE model that restricts the distributions of theoretical midpoints performs better than both the classical MDE model and the model that does not incorporate geometric constraints.Main conclusions Of the three models evaluated here, the midpoint-restricted MDE model is found to be the best for explaining species richness and species range-size distributions on Mount Kinabalu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.