Oral gabapentin, administered to healthy volunteers in a regimen similar to that used in treating chronic neuropathic pain, reduces measures of central sensitization evoked by intradermal capsaicin. This suggests that the pain-relieving effect in chronic neuropathic pain condition is linked to the effect of gabapentin on central sensitization. The ability of the capsaicin model to detect the efficacy of this standard treatment of neuropathic pain suggests that it may have a predictive value for detection of efficacy in human subjects.
The dominant sources of the petrogenic hydrocarbon background in benthic sediments of Prince William Sound, AK (PWS), site of the 1989 Exxon-Valdez oil spill, are eroding Tertiary shales and residues of natural oil seepage. Mass balance considerations and statistical analyses of hydrocarbon fingerprints independently indicate that coal contributes generally less than 1% of the polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers in this background. This is environmentally significant because of presumed differences in the bioavailability of PAH in coal, seep oil residues, and shales. Coal particles are present in PWS sediments, but their PAH and chemical biomarker contributions are overwhelmed by those of seep oil residues and organic particles from shales of low-to-high thermally maturity. In the late Tertiary or early Quaternary, the currently exposed and eroding shale formations were heated into the oil-generation window and, consequently, are now relatively rich in extractable PAH and chemical biomarkers. The exposed and eroding coals in the area, in contrast, experienced long hot burial and are now thermally overmature with respect to oil generation. The concentrations of thermally sensitive PAH and biomarker compounds in PWS sediments are not consistent with a mature coal origin but are consistent with the low-to-high maturity shales and seep oils in the area.
Abstract-Bioavailable hydrocarbons in the Exxon Valdez oil spill zone in Prince William Sound (PWS; AK, USA) shorelines were at or near background levels in 2002, as indicated by low concentrations of polycyclic aromatic hydrocarbons (PAHs) in mussels (Mytilus trossulus) collected from sites throughout PWS. Total PAH (TPAH) minus parent naphthalene concentrations in mussels collected in 1998 to 2002 from sites oiled in 1989 were at or near reference-site values. Both oiled and reference sites included locations associated with past human and industrial activity (HA). Inclusion of the unoiled HA sites in the range of reference sites that define prespill conditions is consistent with federal regulations. For the period from 1998 to 2002, the geometric mean of TPAH concentrations for 218 mussel samples collected from 72 sites, including four HA sites that had been heavily oiled in 1989, is 54 ng/g dry weight (range, 2-1,190 ng/g). The maximum mussel TPAH concentrations are equivalent to a weatheredoil exposure dose to intertidal foragers that is one to three orders of magnitude less than the doses shown to cause sublethal effects in surrogate species. The geometric mean of TPAH concentrations for mussel samples from 28 locations not oiled in 1989 and unaffected by human use (NHA sites) is 28 ng/g (range, 3-355 ng/g), whereas the geometric mean of TPAH concentrations for mussel samples from 14 locations not oiled in 1989 and affected by human use (HA sites) is 106 ng/g (range, 2-12,056 ng/g). The range of data for the unoiled HA and NHA sites defines the background of bioavailable PAHs to mussels on western PWS shorelines that would have prevailed if the oil spill had not occurred. The low PAH concentrations in mussels from sites known to have subsurface oil residues demonstrates the low bioavailability of these spill remnants and, thus, are a low additional risk to foraging wildlife. The present study shows continuous exposure from four-to six-ring PAHs originating at HA sites in western PWS. At low concentrations, these PAHs are known to cause adverse biological effects. However, in the context of PWS, oiled and HA sites represent a small percentage (ϳ0.1-0.2%) of the total PWS shoreline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.