The enzyme ACC oxidase catalyses the last step of ethylene biosynthesis in plants, converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. We have previously described the isolation and characterization of a cDNA clone (pMEL1) encoding an ACC oxidase homolog from melon (Cucumis melo L.). Here we report the isolation and characterization of three genomic clones, corresponding to three putative members of the ACC oxidase gene family in melon. All are transcriptionally active. The sequences of these genes have been determined. One genomic clone (CM-ACO1), corresponding to the cDNA previously isolated, presents a coding region interrupted by three introns. Its transcription initiation site has been defined with RNA from ripe fruit and ethylene-treated leaves. The other two genes (CM-ACO2, CM-ACO3) have only two introns, at positions identical to their counterparts in CM-ACO1. The degree of DNA homology in the coding regions of CM-ACO2 and CM-ACO3 relative to CM-ACO1 is 59% and 75%, respectively. CM-ACO2 and CM-ACO3 are 59% homologous in their coding regions. These three genes have close homology to PH-ACO3, a member of the ACC oxidase multigene family of petunia. The predicted amino acid sequences of CM-ACO1 and CM-ACO3 are 77% to 81% identical to those encoded by the tomato and petunia genes, while the deduced amino acid sequence of CM-ACO2 shows only 42% to 45% homology. RT-PCR analysis using gene-specific primers shows that the three genes are differentially expressed during development, ethylene treatment and wounding. CM-ACO1 is induced in ripe fruit and in response to wounding and to ethylene treatment in leaves. CM-ACO2 is detectable at low level in etiolated hypocotyls. CM-ACO3 is expressed in flowers and is not induced by any of the stimuli tested.
The isopenicillin N synthetase (IPNS) gene has been isolated from wild-type Penicillium chrysogenum and used as a probe to detect the equivalent gene on Southern blots of genomic DNA from a mutant producing high levels of penicillin. The IPNS gene in this strain is contained within a region of DNA of wild-type restriction pattern that extends for at least 39 kb and is present at between 8 and 16 copies. The steady state level of IPNS mRNA in the mutant producing high levels of penicillin is between 32- and 64-fold of that of the wild type, suggesting that the rate of transcription of some or all of the copies has been increased. In addition we have also shown that both the IPNS mRNA and enzyme is present throughout the growth phase in both strains under the culture conditions used. IPNS enzyme activity is greatly increased in the strain with the high penicillin titre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.