BackgroundMany studies have found that sequence in the 5’ untranslated regions (UTRs) impacts the translation rate of an mRNA, but the regulatory grammar that underpins this translation regulation remains elusive. Deep learning methods deployed to analyse massive sequencing datasets offer new solutions to motif discovery. However, existing works focused on extracting sequence motifs in individual datasets, which may not be generalisable to other datasets from the same cell type. We hypothesise that motifs that are genuinely involved in controlling translation rate are the ones that can be extracted from diverse datasets generated by different experimental techniques. In order to reveal more generalised cis-regulatory motifs for RNA translation, we develop a multi-task translation rate predictor, MTtrans, to integrate information from multiple datasets.ResultsCompared to single-task models, MTtrans reaches a higher prediction accuracy in all the benchmarked datasets generated by various experimental techniques. We show that features learnt in human samples are directly transferable to another dataset in yeast systems, demonstrating its robustness in identifying evolutionarily conserved sequence motifs. Furthermore, our newly generated experimental data corroborated the effect of most of the identified motifs based on MTtrans trained using multiple public datasets, further demonstrating the utility of MTtrans for discovering generalisable motifs.ConclusionsMTtrans effectively integrates biological insights from diverse experiments and allows robust extraction of translation-associated sequence motifs in 5’UTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.