Transmission electron microscopy is one of the most powerful techniques to characterize nanoscale magnetic structures. In light of the importance of fast control schemes of magnetic states, time-resolved microscopy techniques are highly sought after in fundamental and applied research. Here, we implement time-resolved Lorentz imaging in combination with synchronous radio-frequency excitation using an ultrafast transmission electron microscope. As a model system, we examine the current-driven gyration of a vortex core in a 2 µm-sized magnetic nanoisland. We record the trajectory of the vortex core for continuous-wave excitation, achieving a localization precision of ±2 nm with few-minute integration times. Furthermore, by tracking the core position after rapidly switching off the current, we find a temporal hardening of the free oscillation frequency and an increasing orbital decay rate attributed to local disorder in the vortex potential. arXiv:1907.04608v1 [cond-mat.mes-hall]
We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample’s fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverage.
The spatial features of ultrafast changes in magnetic textures carry detailed information on microscopic couplings and energy transport mechanisms. Electrons excel in imaging such picosecond or shorter processes at nanometer length scales. We review the range of physical interactions that produce ultrafast magnetic contrast with electrons, and specifically highlight the recent emergence of ultrafast Lorentz transmission electron microscopy. From the fundamental processes involved in demagnetization at extremely short timescales to skyrmion-based devices, we show that ultrafast electron imaging will be a vital tool in solving pressing problems in magnetism and magnetic materials where nanoscale inhomogeneity, microscopic field measurement, non-equilibrium behavior or dynamics are involved.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.