Paclitaxel is a commonly used cancer chemotherapy drug that frequently causes painful peripheral neuropathies. The mechanisms underlying this dose-limiting side effect are poorly understood. Growing evidence supports that proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF), released by activated spinal glial cells and within the dorsal root ganglia (DRG) are critical in enhancing pain in various animal models of neuropathic pain. Whether these cytokines are involved in paclitaxel-induced neuropathy is unknown. Here, using a rat neuropathic pain model induced by repeated systemic paclitaxel injections, we examined whether paclitaxel upregulates proinflammatory cytokine gene expression, and whether these changes and paclitaxel-induced mechanical allodynia can be attenuated by intrathecal IL-1 receptor antagonist (IL-1ra) or intrathecal delivery of plasmid DNA encoding the anti-inflammatory cytokine, interleukin-10 (IL-10). The data show that paclitaxel treatment induces mRNA expression of IL-1, TNF, and immune cell markers in lumbar DRG. Intrathecal IL-1ra reversed paclitaxel-induced allodynia and intrathecal IL-10 gene therapy both prevented, and progressively reversed, this allodynic state. Moreover, IL-10 gene therapy resulted in increased IL-10 mRNA levels in lumbar DRG and meninges, measured 2 weeks after initiation of therapy, whereas paclitaxel-induced expression of IL-1, TNF, and CD11b mRNA in lumbar DRG was markedly decreased. Taken together, these data support that paclitaxel-induced neuropathic pain is mediated by proinflammatory cytokines, possibly released by activated immune cells in the DRG. We propose that targeting the production of proinflammatory cytokines by intrathecal IL-10 gene therapy may be a promising therapeutic strategy for the relief of paclitaxelinduced neuropathic pain.
Neuropathic pain is a major clinical problem unresolved by available therapeutics. Spinal cord glia play a pivotal role in neuropathic pain, via the release of proinflammatory cytokines. Anti-inflammatory cytokines, like interleukin-10 (IL-10), suppress proinflammatory cytokines. Thus, IL-10 may provide a means for controlling glial amplification of pain. We recently documented that intrathecal IL-10 protein resolves neuropathic pain, albeit briefly (approximately 2-3 h), given its short half-life. Intrathecal gene therapy using viruses encoding IL-10 can also resolve neuropathic pain, but for only approximately 2 weeks. Here, we report a novel approach that dramatically increases the efficacy of intrathecal IL-10 gene therapy. Repeated intrathecal delivery of plasmid DNA vectors encoding IL-10 (pDNA-IL-10) abolished neuropathic pain for greater than 40 days. Naked pDNA-IL-10 reversed chronic constriction injury (CCI)-induced allodynia both shortly after nerve injury as well as 2 months later. This supports that spinal proinflammatory cytokines are important in both the initiation and maintenance of neuropathic pain. Importantly, pDNA-IL-10 gene therapy reversed mechanical allodynia induced by CCI, returning rats to normal pain responsiveness, without additional analgesia. Together, these data suggest that intrathecal IL-10 gene therapy may provide a novel approach for prolonged clinical pain control.
Exposure to infectious agents during early postnatal life often alters glucocorticoid responses to stress and immune outcomes in adulthood. The authors examined whether neonatal infection results in memory impairments in adult animals. Rats infected with Escherichia coli (E. coli) as neonates displayed impaired memory for a recently explored context in adulthood. This impairment, however, was only observed in rats that received a peripheral immune challenge (lipopolysaccharide; LPS) immediately following context exposure. Adult rats treated neonatally with E. coli also had decreased hippocampal astrocytes compared with phosphate-buffered saline-treated rats, but displayed increased astrocyte reactivity in the hippocampus and decreased brain interleukin-1beta following lipopolysaccharide. Infection during development appears to alter glia within the hippocampus, which may contribute to altered cytokine responses and memory impairment.
Controlling neuropathic pain is an unmet medical need and we set out to identify new therapeutic candidates. AV411 (ibudilast) is a relatively nonselective phosphodiesterase inhibitor that also suppresses glial-cell activation and can partition into the CNS. Recent data strongly implicate activated glial cells in the spinal cord in the development and maintenance of neuropathic pain. We hypothesized that AV411 might be effective in the treatment of neuropathic pain and, hence, tested whether it attenuates the mechanical allodynia induced in rats by chronic constriction injury (CCI) of the sciatic nerve, spinal nerve ligation (SNL) and the chemotherapeutic paclitaxel (Taxol). Twice-daily systemic administration of AV411 for multiple days resulted in a sustained attenuation of CCI-induced allodynia. Reversal of allodynia was of similar magnitude to that observed with gabapentin and enhanced efficacy was observed in combination. We further show that multi-day AV411 reduces SNL-induced allodynia, and reverses and prevents paclitaxel-induced allodynia. Also, AV411 cotreatment attenuates tolerance to morphine in nerve-injured rats. Safety pharmacology, pharmacokinetic and initial mechanistic analyses were also performed. Overall, the results indicate that AV411 is effective in diverse models of neuropathic pain and support further exploration of its potential as a therapeutic agent for the treatment of neuropathic pain.
Migraine is a neurovascular disorder that induces debilitating headaches associated with multiple symptoms including facial allodynia, characterized by heightened responsivity to normally innocuous mechanical stimuli. It is now well accepted that immune activation and immune-derived inflammatory mediators enhance pain responsivity, including in the trigeminal system. Nociceptive ("pain" responsive) trigeminal nerves densely innervate the cranial meninges. We have recently proposed that the meninges may serve as a previously unidentified, key interface between the peripheral immune system and the CNS with potential implications for understanding underlying migraine mechanisms. Our focus here is the development of a model for facial allodynia associated with migraine. We developed a model wherein an indwelling catheter is placed between the skull and dura, allowing immunogenic stimuli to be administered over the dura in awake and freely moving rats. Since the catheter does not contact the brain itself, any proinflammatory cytokines induced following manipulation derive from resident or recruited meningeal immune cells. While surgery alone does not alter immune activation markers, TNF or IL6 mRNA and/or protein, it does decrease gene expression and increase protein expression of IL-1 at 4 days after surgery. Using this model we show the induction of facial allodynia in response to supradural administration of either the HIV glycoprotein gp120 or inflammatory soup (bradykinin, histamine, serotonin, and prostaglandin E2), and the induction of hindpaw allodynia in our model after inflammatory soup. This model allows time and dose dependent assessment of the relationship between changes in meningeal inflammation and corresponding exaggerated pain behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.