Abstract. New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 µm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (d eff ) from 2.3 to 19.4 µm and coarse mode volume median diameter (d vc ) from 5.8 to 45.3 µm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with d eff > 12 µm, or d vc > 25 µm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to d eff . New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when d eff is greater than 2 µm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation, which should be taken into account by numerical weather prediction and climate models.
Predicting the West African monsoon (WAM) remains a major challenge for weather and climate models. We compare multiday continental-scale simulations of the WAM that explicitly resolve moist convection with simulations which parameterize convection. Simulations with the same grid spacing but differing representations of convection isolate the impact of the representation of convection. The more realistic explicit convection gives greater latent and radiative heating farther north, with latent heating later in the day. This weakens the Sahel-Sahara pressure gradient and the monsoon flow, delaying its diurnal cycle and changing interactions between the monsoon and boundary layer convection. In explicit runs, cold storm outflows provide a significant component of the monsoon flux. In an operational global model, biases resemble those in our parameterized case. Improved parameterizations of convection that better capture storm structures, their diurnal cycle, and rainfall intensities will therefore substantially improve predictions of the WAM and coupled aspects of the Earth system. Citation: Marsham,
We describe observations from the Fennec supersite at Bordj Badji Mokhtar (BBM) made during the June 2011 Fennec Intensive Observation Period. These are the first detailed in situ observations of meteorology and dust from the central Sahara, close to the center of the Saharan heat low and the summertime dust maximum. Historically, a shortage of such Saharan observations has created problems for evaluating processes, models, and remote sensing. There was a monsoon influence at BBM before 8 June and after 12 June, with dry Harmattan winds in between. A split boundary layer, generated by ventilation from the Atlantic, persisted during the drier phase. Extensive cold pools (haboobs) and microburst‐type events were regularly observed. Moisture reached BBM at night from the monsoon and the embedded haboobs. As well as the regularly occurring nocturnal low‐level jet (LLJ), a Saharan upper boundary layer (650 hPa) jet was observed, where winds feel drag from dry convection in the afternoon. This jet is linked to the diurnal cycles of moisture and cloud. Most dust was observed in the cloudier monsoon‐affected periods, and covarying dust and cloud amounts explain most of the variations in shortwave radiation that control the surface sensible flux. Dustiness is related to a standard parameterization of uplift using 10 m winds (“uplift potential”), and this is used to estimate uplift. Around 50% of uplift is nocturnal. Around 30% is from the LLJ, and 50% is from haboobs, which are mainly nocturnal. This demonstrates, for the first time from observations, the key role of haboobs, which are problematic for models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.