Total daily energy expenditure (TDEE) and energy expended in activity (EAC) were estimated by the minute-by-minute heart-rate method in 22 (16 men, 6 women) individually calibrated subjects and compared with values obtained by whole-body indirect calorimetry. Subjects followed four activity protocols during the 22 h in the calorimeter; no exercise (n = 6) and 2 (n = 5), 4 (n = 4), and 6 (n = 6) 30-min bouts of exercise on a bicycle ergometer at varying intensities. There were no statistically significant differences between the two methods in TDEE or EAC in any of the sex or protocol groupings. The regression of TDEE by heart rate on TDEE in the calorimeter was y = 0.92x + 1.0 MJ; (r = 0.87, SEE = 0.91 MJ). The heart-rate method also follows the varying activity patterns of individuals and can be used to closely estimate the TDEE and EAC of even small (n = 4-6) groups of subjects. In the present measurements, it gave a maximum error of TDEE for individuals of +20% and -15%.
The dynamical evolution of a quantum register of arbitrary length coupled to
an environment of arbitrary coherence length is predicted within a relevant
model of decoherence. The results are reported for quantum bits (qubits)
coupling individually to different environments (`independent decoherence') and
qubits interacting collectively with the same reservoir (`collective
decoherence'). In both cases, explicit decoherence functions are derived for
any number of qubits. The decay of the coherences of the register is shown to
strongly depend on the input states: we show that this sensitivity is a
characteristic of $both$ types of coupling (collective and independent) and not
only of the collective coupling, as has been reported previously. A non-trivial
behaviour ("recoherence") is found in the decay of the off-diagonal elements of
the reduced density matrix in the specific situation of independent
decoherence. Our results lead to the identification of decoherence-free states
in the collective decoherence limit. These states belong to subspaces of the
system's Hilbert space that do not get entangled with the environment, making
them ideal elements for the engineering of ``noiseless'' quantum codes. We also
discuss the relations between decoherence of the quantum register and
computational complexity based on the new dynamical results obtained for the
register density matrix.Comment: Typos corrected. Discussion and references added. 1 figure + 3 tables
added. This updated version contains 13 (double column) pages + 8 figures.
PRA in pres
We show that quantum coherence of biomolecular excitons is maintained over exceedingly long times due to the constructive role of their non-Markovian protein-solvent environment. Using a numerically exact approach, we demonstrate that a slow quantum bath helps to sustain quantum entanglement of two pairs of Förster coupled excitons, in contrast to a Markovian environment. We consider the crossover from a fast to a slow bath and from weak to strong dissipation and show that a slow bath can generate robust entanglement. This persists to surprisingly high temperatures, even higher than the excitonic gap and is absent for a Markovian bath.
Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.