Abstract. Physical Activity is important for maintaining healthy lifestyles. Recommendations for physical activity levels are issued by most governments as part of public health measures. As such, reliable measurement of physical activity for regulatory purposes is vital. This has lead research to explore standards for achieving this using wearable technology and artificial neural networks that produce classifications for specific physical activity events. Applied from a very early age, the ubiquitous capture of physical activity data using mobile and wearable technology may help us to understand how we can combat childhood obesity and the impact that this has in later life. A supervised machine learning approach is adopted in this paper that utilizes data obtained from accelerometer sensors worn by children in free-living environments. The paper presents a set of activities and features suitable for measuring physical activity and evaluates the use of a Multilayer Perceptron neural network to classify physical activities by activity type. A rigorous reproducible data science methodology is presented for subsequent use in physical activity research. Our results show that it was possible to obtain an overall accuracy of 96% with 95% for sensitivity, 99% for specificity and a kappa value of 94% when three and four feature combinations were used.
ABSTRACT-Physical Activity is a fundamental component for the maintenance of a healthy lifestyle. Recommendations for physical activity levels are issued by most governments as part of public health measures. Therefore, it is vital for regulatory purposes, that there are reliable measurements of physical activity. However, the techniques and protocols used in existing physical activity research, including laboratory-based measurement, have received increasingly critical scrutiny in recent times. Consequently, physical activity researchers have begun to explore the use of wearable sensing technology to capture large amounts of data and the use of machine learning techniques, specifically artificial neural networks, to produce classifications for specific physical activity events. This paper explores this idea further and presents a supervised machine learning approach that utilises data obtained from accelerometer sensors worn by children in free-living environments.The paper posits a rigorous data science approach that presents a set of activities and features suitable for measuring physical activity in children in free-living environments. A Multilayer Perceptron neural network is used to classify physical activities by activity type, using ecologically valid data from body worn accelerometer sensors. A rigorous reproducible data science methodology is presented for subsequent use in physical activity research. Our results show that it was possible to obtain an overall accuracy of 92% using the initial data set, and 99.8% using interpolated cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.