Technologies such as horizontal drilling and multistage hydraulic fracturing are central to ensuring the viability of shale oil and gas resource development by maximizing contact with the most productive reservoir volumes. However, characterization efforts based on the use of well logs and cores, although very informative, may be associated with substantial uncertainty in interwell volumes. Consequently, this work is centered around the development of a predictive tool based on surface seismic data analysis to rapidly demarcate the most prolific reservoir volumes, to identify zones more amenable to hydraulic fracturing, and to provide a methodology to locate productive infill wells for further development. Specifically, we demonstrate that surface seismic attributes such as λρ/μρ crossplots can successfully be employed to quantitatively grade reservoir rocks in unconventional plays. We also investigate the role of seismically inverted Poisson's ratio as a fracability discriminator and Young's modulus as an indicator of total organic carbon richness and porosity. The proposed predictive tool for sweet spot identification relies on classifying reservoir volumes on the basis of their amenability to fracturing and reservoir quality. The classification scheme is applied to a field case study from the Lower Barnett Shale and we validate these results using production logs recorded in four horizontal wells and microseismic data acquired while fracturing these wells. The integration of seismic data, production logs, and microseismic data underscores the value of shale reservoir characterization with a diverse suite of measurements to determine optimal well locations and to locate hydraulic fracture treatments. A key advantage of the methodology developed here is the ease of regional-scale characterization that can easily be generalized to other shale plays.
Unconventional gas reservoirs are characterized by low porosity and low permeability. Due to the low permeability in these types of plays, hydraulic fracture stimulation is required to achieve gas production. An effective stimulation connects the existing natural fractures and effectively links as much reservoir rock as possible with the wellbore. This study shows that production logs such as the temperature log and the differential gas production log when plotted in the Lambda-rho/Mu-rho background are in agreement with the two hypotheses. High temperatures correspond to high gas rates; therefore, high temperatures and high gas rates are clustered together towards the lower left hand side of the Lambda-rho/Mu-rho cross plot, while lower temperature and lower gas rates cluster towards the upper right hand side of the cross plot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.