The X-rays of 17 patients with fresh fractures of the lunate bone have been reviewed. The fractures were classified according to their radiological appearances and according to the vascular anatomy of the lunate. A long term X-ray follow-up examination was performed.
ObjectivesThe reliability of ultrasonic strain elastography (SEL) used to detect abnormalities in the supraspinatus tendon is unclear. Thus, the aim of this study was to investigate the reliability of SEL in the supraspinatus tendon.DesignAn intra-rater and inter-rater reliability study.SettingA single-centre study conducted at the University of Southern Denmark.ParticipantsTwenty participants with shoulder pain and MRI-verified supraspinatus tendinosis and 20 asymptomatic participants (no MRI).Primary and secondary outcome measuresRaw values (RAW) and ratios (deltoid muscle (DELT) and gel pad (GEL) as reference tissues) were calculated and mean values of measurements from three regions of the supraspinatus tendon were reported. Colour scale ratings and number of yellow/red lesions from the three areas were also included.ResultsIntra-rater reliability showed intraclass correlation coefficients (ICCs) for RAW, DELT and GEL: 0.97 (minimal detectable change (MDC): 0.28 (6.36% of the mean)), 0.89 (MDC: 2.91 (20.37%)) and 0.73 (MDC: 1.61 (58.82%)), respectively. The ICCs for inter-rater reliability were 0.89 (MDC: 0.47 (10.53%)), 0.78 (MDC: 3.69 (25.51%)) and 0.70 (MDC: 1.75 (62.63%)), respectively.For colour scale ratings, intra-rater reliability (linear weighted kappa) ranged from 0.76 to 0.79, with the inter-rater reliability from 0.71 to 0.81. For the number of lesions, intra-rater reliability ranged from 0.40 to 0.82 and inter-rater reliability from 0.24 to 0.67.ConclusionsIntra-rater and inter-rater reliability were excellent for raw values and for ratios with deltoid muscle as the reference tissue, and good for ratios with gel pad as the reference tissue. The reliability of colour scale ratings was substantial-to-almost perfect, and for the number of lesions fair-to-almost perfect.Although high reliability was found, validity and responsiveness of these elastographic methods needs further investigation.Ethics approvalThe study protocol was approved by the Ethics Committee for the Region of South Denmark (S-20160115) and reported to the Danish Data Protection Agency (2014-41-3266).
AimTo evaluate the inter-rater reliability of measuring structural changes in the tendon of patients, clinically diagnosed with supraspinatus tendinopathy (cases) and healthy participants (controls), on ultrasound (US) images captured by standardised procedures.MethodsA total of 40 participants (24 patients) were included for assessing inter-rater reliability of measurements of fibrillar disruption, neovascularity, as well as the number and total length of calcifications and tendon thickness. Linear weighted κ, intraclass correlation (ICC), SEM, limits of agreement (LOA) and minimal detectable change (MDC) were used to evaluate reliability.Results‘Moderate—almost perfect’ κ was found for grading fibrillar disruption, neovascularity and number of calcifications (k 0.60–0.96). For total length of calcifications and tendon thickness, ICC was ‘excellent’ (0.85–0.90), with SEM(Agreement) ranging from 0.63 to 2.94 mm and MDC(group) ranging from 0.28 to 1.29 mm. In general, SEM, LOA and MDC showed larger variation for calcifications than for tendon thickness.ConclusionsInter-rater reliability was moderate to almost perfect when a standardised procedure was applied for measuring structural changes on captured US images and movie sequences of relevance for patients with supraspinatus tendinopathy. Future studies should test intra-rater and inter-rater reliability of the method in vivo for use in clinical practice, in addition to validation against a gold standard, such as MRI.Trial registration numberNCT01984203; Pre-results.
Background Diseased, injured, or dysfunctional skeletal muscles may demonstrate abnormal function and contractility. Currently, only few in vivo imaging techniques are able to characterize the contractile properties of muscle tissue. This study aimed to test the hypothesis that muscle strain can be tracked in two upper extremity skeletal muscles by speckle-tracking ultrasonography (STU) and correlates with isometric muscle contractions. Methods A convenience sample of 10 healthy, adult volunteers with normal shoulder function were tested. The 5 women and 5 men had a mean age of 45 years (range: 39–59 years) and BMI < 30. STU was applied to the supraspinatus (SS) and biceps brachii (BB) muscles using a M11 L-MHz linear transducer (frequency 8–15 MHz) hooked to a Vivid E 9TM ultrasound machine. Strain validation was performed by correlating peak strain against standardized sub-maximal, isometric load conditions of the two muscles (20–80% of maximal voluntary contraction) using a custom-built muscle dynamometer based on strain-gauge technique. Data were analyzed offline using the EchoPac speckle-tracking software and were blinded to the examiner. Results Intramuscular strain measured by STU in the SS and BB muscles showed moderate to strong correlations with external muscle load (SS: r = − 0.76, p < 0.0001 and BB: r = − 0.60, p < 0.0001). We found strain to vary from approximately 10–20% during increasing submaximal, isometric conditions. Conclusions We demonstrate that STU can be applied on healthy skeletal musculature (SS and BB muscles). The observed correlations between strain and isometric contractions suggest a valid technique. However, the concept of measuring muscle strain non-invasively needs further investigation for validity, accuracy, responsiveness, and reliability before its therapeutic and research potential can be realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.