Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.
Zukerman S, Glendinning JI, Margolskee RF, Sclafani A. T1R3 taste receptor is critical for sucrose but not Polycose taste. In addition to their well-known preference for sugars, mice and rats avidly consume starch-derived glucose polymers (e.g., Polycose). T1R3 is a component of the mammalian sweet taste receptor that mediates the preference for sugars and artificial sweeteners in mammals. We examined the role of the T1R3 receptor in the ingestive response of mice to Polycose and sucrose. In 60-s two-bottle tests, knockout (KO) mice preferred Polycose solutions (4 -32%) to water, although their overall preference was lower than WT mice (82% vs. 94%). KO mice also preferred Polycose (0.5-32%) in 24-h two-bottle tests, although less so than WT mice at dilute concentrations (0.5-4%). In contrast, KO mice failed to prefer sucrose to water in 60-s tests. In 24-h tests, KO mice were indifferent to 0.5-8% sucrose, but preferred 16 -32% sucrose; this latter result may reflect the post-oral effects of sucrose. Overall sucrose preference and intake were substantially less in KO mice than WT mice. However, when retested with 0.5-32% sucrose solutions, the KO mice preferred all sucrose concentrations, although they drank less sugar than WT mice. The experience-induced sucrose preference is attributed to a post-oral conditioned preference for the T1R3-independent orosensory features of the sugar solutions (odor, texture, T1R2-mediated taste). Chorda tympani nerve recordings revealed virtually no response to sucrose in KO mice, but a near-normal response to Polycose. These results indicate that the T1R3 receptor plays a critical role in the tastemediated response to sucrose but not Polycose.preference; C57BL/6J mice; chorda tympani nerve; saccharin; postoral conditioning THE TASTE OF SUGAR IS HIGHLY attractive to humans and many other animal species. Studies of inbred mouse strains led to the identification of the T1R2 and T1R3 receptor proteins that dimerize to form a sweet taste receptor (1). Selective elimination of these receptor proteins in knockout mice attenuates or completely blocks the behavioral and gustatory nerve responses to sugars and artificial sweeteners (7, 40). Further, allelic variation in the Tas1r3 gene, which codes for the T1R3 protein (3,(17)(18)(19)24), contributes to strain differences in sensitivity (9), lick responsiveness (8, 10), peripheral taste nerve responsiveness (11), and daily intake and preference (11, 22) for sugars and artificial sweeteners.Sugars are not the only carbohydrates that have an attractive taste to some nonhuman species. Twenty years ago, our laboratory published a series of papers demonstrating that rats, mice, hamsters, and gerbils are strongly attracted to the taste of starch-derived glucose polymers such as Polycose and other maltodextrins (26). Behavioral and electrophysiological evidence indicates that Polycose and sucrose have qualitatively distinct taste sensations in rodents. For example, aversions conditioned to Polycose or sucrose do not cross-generalize, and some ta...
Little is known about how specific genes influence taste function in mammals. One of the most promising ways to fill this void is to screen the progeny of chemically mutagenized (or genetically altered) mice for aberrant taste phenotypes and then identify the mutated gene(s) that is associated with each taste anomaly. To exploit this approach, a high-throughput and robust screening procedure is needed. We have attempted to meet this demand by developing an automated procedure that assesses taste responsiveness of individual mice to palatable and unpalatable taste stimuli. We focused on three taste stimuli (quinine hydrochloride, QHCl; sodium chloride, NaCl; and sucrose) and one mouse strain (C57BL/6). We used a commercially available gustometer system that both monitors the licking responses of mice and controls the presentation of each taste stimulus during successive 5 s trials. We describe a screening procedure that (after 2 days of simple training) can generate a concentration-response curve for NaCl or sucrose during a single 30 min test session, and for QHCl over three 30 min test sessions. A normative database based on the responses of 98 mice subjected to our screening procedure is also presented. We envision that investigators could use this normative database to assess taste function in the progeny of mutagenized (or genetically altered) mice. Any mouse that deviates significantly-e.g. three standard deviations (SD)-from the mean of the normative database would be flagged as having a potentially interesting mutation. We also developed an additional second screen for identifying mice with oromotor abnormalities. This latter screen is necessary because oromotor problems could lead to false positives or negatives in the screen for taste function, but is also useful for researchers interested in genes influencing oromotor circuitry. Throughout the development of the screening protocol, we sought to balance two conflicting demands: the need to maximize the screen's sensitivity and minimize its duration. This screen represents a significant improvement over the common two-bottle preference test because it assesses taste function more specifically and in a fraction of the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.