Site-specific modification of native antibodies has proven advantageous, as it enhances the properties of antibody-based bioconjugates without the need to manipulate the genetic code. However, native antibody modification is typically limited to strategies that introduce a single functional handle. In this work, we addressed this limitation by designing heterobifunctional substrates for microbial transglutaminase (MTG) that contain both azide and methyltetrazine "click" handles. Structure-conjugation relationships for these substrates were evaluated using the Her2-targeted antibody trastuzumab. Forster resonance energy transfer (FRET) was used to demonstrate that these chemical handles are mutually orthogonal. This orthogonality was leveraged for the one-pot synthesis of a bifunctional antibody-drug conjugate (ADC). This ADC, containing a maytansine-derived payload and a hydrophobicity-masking polyethylene glycol (PEG) side chain, demonstrated potent in vitro activity in SKOV3 cells. These studies establish the dual "click" approach as a powerful technique in the toolbox for native antibody modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.