P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug efflux pump, is N-linked glycosylated at asparagine residues 91, 94, and 99 located within the first extracellular loop. We report here the biochemical characterization of glycosylation-deficient (Gly(-)) P-gp using a vaccinia virus based transient expression system. The staining of HeLa cells expressing Gly(-) P-gp (91, 94, and 99N-->Q), with P-gp specific monoclonal antibodies, MRK-16, UIC2 and 4E3 revealed a 40 to 50% lower cell-surface expression of mutant P-gp compared to the wild-type protein. The transport function of Gly(-) P-gp, assessed using a variety of fluorescent compounds indicated that the substrate specificity of the pump was not affected by the lack of glycosylation. Additional mutants, Gly(-) D (91, 94, 99N-->D) and Gly(-) Delta (91, 94, 99 N deleted) were generated to verify that the reduced cell surface expression, as well as total expression, were not a result of the glutamine substitutions. Gly(-) D and Gly(-) Delta Pgps were also expressed to the same level as the Gly(-) mutant protein. (35)S-Methionine/cysteine pulse-chase studies revealed a reduced incorporation of (35)S-methionine/cysteine in full length Gly(-) P-gp compared to wild-type protein, but the half-life ( approximately 3 hr) of mutant P-gp was essentially unaltered. Since treatment with proteasome inhibitors (MG-132, lactacystin) increased only the intracellular level of nascent, mutant P-gp, the decreased incorporation of (35)S-methionine/cysteine in Gly(-) P-gp appears to be due to degradation of improperly folded mutant protein by the proteasome and endoplasmic reticulum-associated proteases. These results demonstrate that the unglycosylated protein, although expressed at lower levels at the cell surface, is functional and suitable for structural studies.
The human MDR1-encoded transporter is a 170-kDa plasma membrane glycoprotein [P-glycoprotein (P-gp)] capable of binding and energy-dependent extrusion of structurally diverse organic compounds and drugs. P-gp seems to play a significant role in uptake, distribution, and excretion of many different drugs. To determine whether common polymorphic forms of P-gp are likely to alter function of P-gp, we characterized five known MDR1 coding polymorphisms (N21D, F103L, S400N, A893S, and A998T) using a vaccinia virus-based transient expression system. Cell surface expression of wild-type P-gp was time-dependent over a time course of 5.5 to 34.5 h; highest expression was obtained by 22 to 26.5 h after infection/transfection, indicating that a semiquantitative assay for P-gp expression levels was possible. HeLa cells stained with the P-gp specific monoclonal antibodies MRK-16 and Western blots probed with C219 revealed similar cell surface expression for the polymorphisms and for wild-type protein. Time-dependent P-gp pump function maximal at 22 h after infection/transfection was demonstrated for the following MDR1 fluorescence substrates: 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoic acid, succinimidyl ester (bodipy-FL)-verapamil, bodipy-FL-vinblastine, calcein-AM, bodipy-FL-prazosin, bisantrene, and bodipy-FL-forskolin, but not for daunorubicin. Transport studies of all tested substrates indicated that the substrate specificity of the pump was not substantially affected by any of the tested polymorphisms. Cell surface expression and function of double mutants including the more common polymorphisms (N21D-S400N, N21D-A893S, and S400N-A893S) showed no differences from wild-type. These results demonstrate that the common MDR1 coding polymorphisms result in P-gps with a cell surface distribution and function similar to wild-type P-gp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.