Mammographic percent density (PD) is a strong risk factor for breast cancer, but there has been relatively little systematic evaluation of other features in mammographic images that might additionally predict breast cancer risk. We evaluated the association of a large number of image texture features with risk of breast cancer using a clinic-based case-control study of digitized film mammograms, all with screening mammograms before breast cancer diagnosis. The sample was split into training (123 cases and 258 controls) and validation (123 cases and 264 controls) data sets. Age-adjusted and body mass index (BMI) -adjusted odds ratios (OR) per SD change in the feature, 95% confidence intervals, and the area under the receiver operator characteristic curve (AUC) were obtained using logistic regression. A bootstrap approach was used to identify the strongest features in the training data set, and results for features that validated in the second half of the sample were reported using the full data set. The mean age at mammography was 64.0 F 10.2 years, and the mean time from mammography to breast cancer was 3.7 F 1.0 (range, 2.0-5.9 years). PD was associated with breast cancer risk (OR, 1.49; 95% confidence interval, 1.25-1.78). The strongest features that validated from each of several classes (Markovian, run length, Laws, wavelet, and Fourier) showed similar ORs as PD and predicted breast cancer at a similar magnitude (AUC = 0.58-0.60) as PD (AUC = 0.58). All of these features were automatically calculated (unlike PD) and measure texture at a coarse scale. These features were moderately correlated with PD (r = 0.39-0.76), and after adjustment for PD, each of the features attenuated only slightly and retained statistical significance. However, simultaneous inclusion of these features in a model with PD did not significantly improve the ability to predict breast cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(3):837 -45)
Purpose:To compare the classification of breast density with two automated methods, Volpara (version 1.5.0; Matakina Technology, Wellington, New Zealand) and Quantra (version 2.0; Hologic, Bedford, Mass), with clinical Breast Imaging Reporting and Data System (BI-RADS) density classifications and to examine associations of these measures with breast cancer risk. Materials andMethods:In this study, 1911 patients with breast cancer and 4170 control subjects matched for age, race, examination date, and mammography machine were evaluated. Participants underwent mammography at Mayo Clinic or one of four sites within the San Francisco Mammography Registry between 2006 and 2012 and provided informed consent or a waiver for research, in compliance with HIPAA regulations and institutional review board approval. Digital mammograms were retrieved a mean of 2.1 years (range, 6 months to 6 years) before cancer diagnosis, with the corresponding clinical BI-RADS density classifications, and Volpara and Quantra density estimates were generated. Agreement was assessed with weighted k statistics among control subjects. Breast cancer associations were evaluated with conditional logistic regression, adjusted for age and body mass index. Odds ratios, C statistics, and 95% confidence intervals (CIs) were estimated. Results:Agreement between clinical BI-RADS density classifications and Volpara and Quantra BI-RADS estimates was moderate, with k values of 0.57 (95% CI: 0.55, 0.59) and 0.46 (95% CI: 0.44, 0.47), respectively. Differences of up to 14% in dense tissue classification were found, with Volpara classifying 51% of women as having dense breasts, Quantra classifying 37%, and clinical BI-RADS assessment used to classify 43%. Clinical and automated measures showed similar breast cancer associations; odds ratios for extremely dense breasts versus scattered fibroglandular densities were 1.8 (95% CI: 1.5, 2.2), 1.9 (95% CI: 1.5, 2.5), and 2.3 (95% CI: 1.9, 2.8) for Volpara, Quantra, and BI-RADS classifications, respectively. Clinical BI-RADS assessment showed better discrimination of case status (C = 0.60; 95% CI: 0.58, 0.61) than did Volpara (C = 0.58; 95% CI: 0.56, 0.59) and Quantra (C = 0.56; 95% CI: 0.54, 0.58) BI-RADS classifications. Conclusion:Automated and clinical assessments of breast density are similarly associated with breast cancer risk but differ up to 14% in the classification of women with dense breasts. This could have substantial effects on clinical practice patterns.q RSNA, 2015
We show that digitized mammograms can be considered as evolving from a simple process. A given image results from passing a random input field through a linear filtering operation, where the filter transfer function has a self-similar characteristic. By estimating the functional form of the filter and solving the corresponding filtering equation, the analysis shows that the input field gray value distribution and spectral content can be approximated with parametric methods. The work gives a simple explanation for the variegated image appearance and multimodal character of the gray value distribution common to mammograms. Using the image analysis as a guide, a simulated mammogram is generated that has many statistical characteristics of real mammograms. Additional benefits may follow from understanding the functional form of the filter in conjunction with the input field characteristics that include the approximate parametric description of mammograms, showing the distinction between homogeneously dense and nondense images, and the development of mass analysis methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.