The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666-.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.
The CMJ distinguished between senior and academy RL players, with seniors demonstrating greater JH through applying a larger C-IMP and thus achieving greater velocity throughout the majority of the concentric phase and at takeoff. Therefore, academy RL players should train to improve triple (ie, ankle, knee, and hip) extension velocity during the CMJ to bring their JH scores in line with those attained by senior players.
Background Although performance of the Nordic hamstring exercise (NHE) has been shown to elicit adaptations that may reduce hamstring strain injury (HSI) risk and occurrence, compliance in NHE interventions in professional soccer teams is low despite a high occurrence of HSI in soccer. A possible reason for low compliance is the high dosages prescribed within the recommended interventions. The aim of this review was to investigate the effect of NHE-training volume on eccentric hamstring strength and biceps femoris fascicle length adaptations. Methods A literature search was conducted using the SPORTDiscus, Ovid, and PubMed databases. A total of 293 studies were identified prior to application of the following inclusion criteria: (1) a minimum of 4 weeks of NHE training was completed; (2) mean ± standard deviation (SD) pre-and post-intervention were provided for the measured variables to allow for secondary analysis; and (3) biceps femoris muscle architecture was measured, which resulted in 13 studies identified for further analysis. The TESTEX criteria were used to assess the quality of studies with risk of bias assessment assessed using a fail-safe N (Rosenthal method). Consistency of studies was analysed using I 2 as a test of heterogeneity and secondary analysis of studies included Hedges' g effect sizes for strength and muscle architecture variables to provide comparison within studies, between-study differences were estimated using a random-effects model. Results A range of scores (3-11 out of 15) from the TESTEX criteria were reported, showing variation in study quality. A 'low risk of bias' was observed in the randomized controlled trials included, with no study bias shown for both strength or architecture (N = 250 and 663, respectively; p < 0.001). Study consistency was moderate to high for strength (I 2 = 62.49%) and muscle architecture (I 2 = 88.03%). Within-study differences showed that following interventions of ≥ 6 weeks, very large positive effect sizes were seen in eccentric strength following both high volume (g = 2.12) and low volume (g = 2.28) NHE interventions. Similar results were reported for changes in fascicle length (g ≥ 2.58) and a large-to-very large positive reduction in pennation angle (g ≥ 1.31). Between-study differences were estimated to be at a magnitude of 0.374 (p = 0.009) for strength and 0.793 (p < 0.001) for architecture. Conclusions Reducing NHE volume prescription does not negatively affect adaptations in eccentric strength and muscle architecture when compared with high dose interventions. These findings suggest that lower volumes of NHE may be more appropriate for athletes, with an aim to increase intervention compliance, potentially reducing the risk of HSI.
This study examined concurrent validity of countermovement vertical jump reactive strength index modified and force-time characteristics recorded using a 1-dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral countermovement vertical jumps on 2 portable force plates placed on top of 2 in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to takeoff; jump height; reactive strength index modified; and braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r ≥ .99). There were small (d < 0.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (P < .001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% confidence limits, 0.9%-2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement were for jump height (2.1%), time to takeoff (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded countermovement vertical jump. Thus, practitioners can use both force plates interchangeably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.