Obesity with adiposity is a common disorder in modern days, influenced by environmental factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regulations and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differentially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA) data. We applied machine-learning-based analytics including generalized regression (GR) as a confirmatory validation model to identify the factors that could contribute to DMRs impacting colon cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer in obese patients, independent of age. The genes affected by these DMR could be potential novel biomarkers of colon cancer in obese patients for cancer prevention and progression.
Nursing informatics requires an understanding of patientcentered data and clinical workflow, and epigenetic research requires an understanding of data analysis. The purpose of this article is to document the methodology that nursing informatics specialists can use to conduct epigenetic research and subsequently strengthen patient-centered care. A pilot study of a secondary methylation data analysis using The Cancer Genome Atlas data from individuals with colon cancer is utilized to illustrate the methodology. The steps for conducting the study using public and free resources are discussed. These steps include finding a data source; downloading and analyzing differentially methylated regions; annotating differentially methylated region, gene ontology and function analysis; and reporting results. A model of epigenetic testing workflow is provided, as is a list of publicly available data and analysis sources that can be used to conduct epigenetic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.