BackgroundConserving animal populations in places where human activity is increasing is an ongoing challenge in many parts of the world. We investigated how human activity interacted with maternal status and individual variation in behavior to affect reliability of spatially-explicit models intended to guide conservation of critical ungulate calving resources. We studied Rocky Mountain elk (Cervus elaphus) that occupy a region where 2900 natural gas wells have been drilled.Methodology/Principal FindingsWe present novel applications of generalized additive modeling to predict maternal status based on movement, and of random-effects resource selection models to provide population and individual-based inference on the effects of maternal status and human activity. We used a 2×2 factorial design (treatment vs. control) that included elk that were either parturient or non-parturient and in areas either with or without industrial development. Generalized additive models predicted maternal status (parturiency) correctly 93% of the time based on movement. Human activity played a larger role than maternal status in shaping resource use; elk showed strong spatiotemporal patterns of selection or avoidance and marked individual variation in developed areas, but no such pattern in undeveloped areas. This difference had direct consequences for landscape-level conservation planning. When relative probability of use was calculated across the study area, there was disparity throughout 72–88% of the landscape in terms of where conservation intervention should be prioritized depending on whether models were based on behavior in developed areas or undeveloped areas. Model validation showed that models based on behavior in developed areas had poor predictive accuracy, whereas the model based on behavior in undeveloped areas had high predictive accuracy.Conclusions/SignificanceBy directly testing for differences between developed and undeveloped areas, and by modeling resource selection in a random-effects framework that provided individual-based inference, we conclude that: 1) amplified selection or avoidance behavior and individual variation, as responses to increasing human activity, complicate conservation planning in multiple-use landscapes, and 2) resource selection behavior in places where human activity is predictable or less dynamic may provide a more reliable basis from which to prioritize conservation action.
Animal populations are becoming increasingly exposed to human activity as human populations expand and demand for energy resources (e.g., coal, oil and natural gas) increases. We initiated this study to document survival and cause-specific mortality patterns of female Rocky Mountain elk (Cervus elaphus) exposed to increasing levels of human activity. We fitted 184 females with VHF or GPS collars over 4 years and used the Kaplan-Meier survival estimator to calculate annual survival rates. We used multinomial logistic regression to assess differences in cause-specific mortality and generalized linear mixed models to determine how probability of survival was structured during hunting season; both analyses examined a suite of 5 covariates (i.e., age, year, extent of space use, cover, and human footprint) as potentially influencing cause-specific mortality and survival probability. Annual probability of survival averaged 0.8 (±0.02 SE) over 4 years but averaged 0.91 (±0.03 SE) when harvest mortality was excluded, which was the most significant source of mortality in most years (" x ¼ 0:13 AE 0:02 SE). We found no difference between cause-specific mortality sources relative to elk that survived during the hunting season (v 10 2 = 5.79, P = 0.832). The probability of a female surviving during hunting season was negatively influenced by age, year, extent of space use, cover, and human footprint. We found evidence that human activity may have influenced annual rates of natural survival (i.e., exclusive of hunting mortality) and probability of survival during the hunting season. We note that this study occurred largely on privately owned and managed residential and ranch land and focused on female elk; we acknowledge that survival rate and cause-specific patterns of mortality may vary as a function of land ownership (private vs. public), demographic status, and management and harvest practices. While temporal and spatial scales of 1 week may be sufficient to describe patterns of direct mortality during hunting season, broad temporal or spatial scale analyses may be needed to address natural mortality during other seasons.
Development and extraction of resources such as oil and gas has directly and indirectly reduced available habitat to wildlife through changes in behavior and resource use. To assess how elk (Cervus elaphus) and deer (Odocoileus spp.) were spatially distributed relative to roads and coal-bed natural gas well pads, we collected pellet group data during 2 summers in south-central Colorado. We used generalized linear mixed models to assess the relative probability of use of elk and deer in relation to roads and well pads. We found relative probability of use was positively associated with distance from roads, indicating greater use of areas farther away from roads. Relative probability of use was negatively associated with distance to well pads, potentially as a result of plant phenology and reseeding in disturbed areas around well pads. Other factors such as elevation, slope and vegetative security cover also influenced elk and deer spatial distributions. Based on these data, it appears resource use may be driven by forage and security cover more than disturbance features. Pellet group surveys appear to be an appropriate technique for evaluating resource use of populations across large spatial extents when logistical and financial constraints limit the use of more advanced technology such as very high frequency and global positioning system collars
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.