JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Archaeological and ecological investigations in the Mirador
Basin of northern Guatemala have recovered archaeological,
phytolith, palynological, and pedological data relevant to the
early occupation and development of Maya civilization in a specific
environmental matrix. Fluctuation in vegetation types as evident
in cores and archaeological profiles suggest that the seasonally
wet, forested bajo environment currently found in the
northern Peten was anciently more of a perennially wet marsh
system that may have been heavily used and influenced by large
Preclassic occupations. Data suggest that climatic and
environmental factors correspond with the cultural process in
the Mirador Basin, and research in progress is oriented to further
elucidating these issues.
A continuous record of organic carbon δ13C from a buried soil sequence in south-central Texas demonstrates: 1) strong coupling between marine and adjacent continental ecosystems in the late Pleistocene as a result of glacial meltwater entering the Gulf of Mexico and 2) ecosystem decoupling in the Holocene associated with a reduction of meltwater and a shift in global circulation patterns. In the late Pleistocene, reduction in C4 plant productivity correlates with two well-documented glacial meltwater pulses (∼15,000 and 12,000 14C yr B.P.), indicating a cooler-than-present adjacent continental environment. Increased C4 production between 11,000 and 10,000 14C yr B.P. suggests that the Younger Dryas was a warm interval responding to the diversion of glacial meltwater away from the Mississippi River. With waning meltwater flow, C4 productivity generally increased throughout the Holocene, culminating in peak warm intervals at ∼5000 and 2000 14C yr B.P. Shifts in the abundances of C3–C4 plants through the late Quaternary show no correlation to ecophysiological responses to atmospheric CO2 concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.