Equilibrium solubility of triclocarban (TCC) expressed in mole fraction in 1,4-dioxane and cyclohexane, as well, as in 19 {cyclohexane (1) + 1,4-dioxane (2)} mixtures, was determined at seven temperatures from T = (288.15 to 318.15) K. Logarithmic TCC solubility in these cosolvent mixtures was adequately correlated with a lineal bivariate equation as function of both the mixtures composition and temperature. Apparent thermodynamic quantities for the dissolution and mixing processes were computed by means of the van’t Hoff and Gibbs equations observing endothermal and entropy-driven dissolution processes in all cases. The enthalpy–entropy compensation plot of apparent enthalpy vs. apparent Gibbs energy was linear exhibiting positive slope implying enthalpy-driving for TCC transfer from cyclohexane to 1,4-dioxane. Ultimately, by using the inverse Kirkwood–Buff integrals it is observed that TCC is preferentially solvated by cyclohexane molecules in 1,4-dioxane-rich mixtures but preferentially solvated by 1,4-dioxane molecules in cyclohexane-rich mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.