Abstract:Traditionally, damage identification techniques in bridges have focused on monitoring changes to modal-based Damage Sensitive Features (DSFs) due to their direct relationship with structural stiffness and their spatial information content. However, their progression to real-world applications has not been without its challenges and shortcomings, mainly stemming from: (1) environmental and operational variations; (2) inefficient utilization of machine learning algorithms for damage detection; and (3) a general over-reliance on modal-based DSFs alone. The present paper provides an in-depth review of the development of modal-based DSFs and a synopsis of the challenges they face. The paper then sets out to addresses the highlighted challenges in terms of published advancements and alternatives from recent literature.
Overtime, bridge condition declines due to a number of degradation processes such as creep, corrosion, and cyclic loading, among others. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters. These techniques can often suffer to their sensitivity to changes in environmental and operational conditions, mistaking them as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration-based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study based on the S101 bridge is also presented to test the damage sensitivity to a chosen methodology.
The assessment of bridge condition from vibration measurements has generally been determined via the monitoring of modal parameters determined though adaptations of the standard Fast Fourier Transform (FFT) or other stationary time-series based transformations. However, the nonstationary nature of measured vibration signals from damaged structures can limit the quality of frequency content information estimated by such methods. The Hilbert–Huang Transform’s (HHT) ability to decompose non-stationary measured vibration data into a time-frequency-energy representation allows signal variations to be identified sooner than other stationary-based transformations, thus potentially\ud
allowing early detection of damage. The present study uses data obtained from a progressive damage test conducted on a real bridge subjected to excitation from a double axle passing vehicle as a test subject.\ud
Decomposed vibration signals from the HHT and associated marginal spectrums are assessed to determine\ud
structural condition for various damage states and different locations along the bridge.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.