We evaluate the rates of secondary production and primary emission of formaldehyde (CH<sub>2</sub>O) from petrochemical industrial facilities and on-road vehicles in the Houston Texas region. This evaluation is based upon ambient measurements collected during field studies in 2000, 2006 and 2009. The predominant CH<sub>2</sub>O source (92 ± 4% of total) is secondary production formed during the atmospheric oxidation of highly reactive volatile organic compounds (HRVOCs) emitted from the petrochemical facilities. Smaller contributions are primary emissions from these facilities (4 ± 2%), and secondary production (~3%) and primary emissions (~1%) from vehicles. The primary emissions from both sectors are well quantified by current emission inventories. Since secondary production dominates, control efforts directed at primary CH<sub>2</sub>O emissions cannot address the large majority of CH<sub>2</sub>O sources in the Houston area, although there may still be a role for such efforts. Ongoing efforts to control alkene emissions from the petrochemical facilities, as well as volatile organic compound emissions from the motor vehicle fleet, will effectively reduce the CH<sub>2</sub>O concentrations in the Houston region. We do not address other emission sectors, such as off-road mobile sources or secondary formation from biogenic hydrocarbons. Previous analyses based on correlations between ambient concentrations of CH<sub>2</sub>O and various marker species have suggested much larger primary emissions of CH<sub>2</sub>O, but those results neglect confounding effects of dilution and loss processes, and do not demonstrate the causes of the observed correlations. Similar problems must be suspected in any source apportionment analysis of secondary species based upon correlations of ambient concentrations of pollutants
Solar occultation flux (SOF) measurements of alkenes have been conducted to identify and quantify the largest emission sources in the vicinity of Houston and in SE Texas during September 2006 as part of the TexAQS 2006 campaign. The measurements have been compared to emission inventories and have been conducted in parallel with airborne plume studies. The SOF measurements show that the hourly gas emissions from the large petrochemical and refining complexes in the Houston Ship Channel area and Mount Belvieu during September 2006 corresponded to 1250 ± 180 kg/h of ethene and 2140 ± 520 kg/h of propene, with an estimated uncertainty of about 35%. This can be compared to the 2006 emission inventory value for ethene and propene of 145 ± 4 and 181 ± 42 kg/h, respectively. On average, for all measurements during the campaign, the discrepancy factor is 10.2(+8,‐5) for ethene and 11.7(+7,‐4) for propene. The largest emission source was Mount Belvieu, NE of the Houston Ship Channel, with ethene and propene emissions corresponding to 440 ± 130 kg/h and 490 ± 190 kg/h, respectively. Large variability of propene was observed from several petrochemical industries, for which the largest reported emission sources are flares. The SOF alkene emissions agree within 50% with emissions derived from airborne measurements at three different sites. The airborne measurements also provide support to the SOF error budget.
Abstract. Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl–VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3 × 105 molecules cm−3 from ClNO2 alone, peaking at 09:30 LT and up to 8.4 × 105 molecules cm−3 when including the supporting inorganic halogen measurements.Cl–VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.
We evaluate the rates of secondary production and primary emission of formaldehyde (CH<sub>2</sub>O) from petrochemical industrial facilities and on-road vehicles in the Houston Texas region. This evaluation is based upon ambient measurements collected during field studies in 2000, 2006 and 2009. The predominant CH<sub>2</sub>O source (92 ± 4% of total) is secondary production formed during the atmospheric oxidation of highly reactive volatile organic compounds (HRVOCs) emitted from the petrochemical facilities. Smaller contributions are primary emissions from these facilities (4 ± 2%), and secondary production (~3%) and primary emissions (~1%) from vehicles. The primary emissions from both sectors are well quantified by current emission inventories. Since secondary production dominates, control efforts directed at primary CH<sub>2</sub>O emissions cannot address the large majority of CH<sub>2</sub>O sources in the Houston area, although there may still be a role for such efforts. Ongoing efforts to control alkene emissions from the petrochemical facilities, as well as volatile organic compound emissions from the motor vehicle fleet, will effectively reduce the CH<sub>2</sub>O concentrations in the Houston region. We have not addressed other emission sectors, such as off-road mobile sources or secondary formation from biogenic hydrocarbons. Previous analyses based on correlations between ambient concentrations of CH<sub>2</sub>O and various marker species have suggested much larger primary emissions of CH<sub>2</sub>O, but those results neglect confounding effects of dilution and loss processes, and do not demonstrate the causes of the observed correlations. Similar problems must be suspected in any source apportionment analysis of secondary species based upon correlations of ambient concentrations of pollutants
ABSTRACT:The study describes significant outcomes of the 'Metrology for Meteorology' project, MeteoMet, which is an attempt to bridge the meteorological and metrological communities. The concept of traceability, an idea used in both fields but with a subtle difference in meaning, is at the heart of the project. For meteorology, a traceable measurement is the one that can be traced back to a particular instrument, time and location. From a metrological perspective, traceability further implies that the measurement can be traced back to a primary realization of the quantity being measured in terms of the base units of the International System of Units, the SI. These two perspectives reflect long-standing differences in culture and practice and this project -and this study -represents only the first step towards better communication between the two communities. The 3 year MeteoMet project was funded by the European Metrology Research Program (EMRP) and involved 18 European National Metrological Institutes, 3 universities and 35 collaborating stakeholders including national meteorology organizations, research institutes, universities, associations and instrument companies. The project brought a metrological perspective to several long-standing measurement problems in meteorology and climatology, varying from conventional ground-based measurements to those made in the upper atmosphere. It included development and testing of novel instrumentation as well as improved calibration procedures and facilities, instrument intercomparison under realistic conditions and best practice dissemination. Additionally, the validation of historical temperature data series with respect to measurement uncertainties and a methodology for recalculation of the values were included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.