This study provides in vivo evidence that the concentrations of oxyhemoglobin and deoxyhemoglobin increase in the cerebral subarachnoid perivascular space during the development of delayed cerebral vasospasm. The results support the hypothesis that oxyhemoglobin is involved in the pathogenesis of delayed cerebral vasospasm after SAH and implicate deoxyhemoglobin as a possible vasospastic agent.
Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 microM), methemoglobin (10 microM), or hypoxia (11% oxygen). There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 +/- 2.2 pg/ml and ET-1 plasma levels were 1.2 +/- 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 +/- 1.7 pg/ml in CSF and 2.7 +/- 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 +/- 0.4 pg/ml at the occlusion vs. 3.1 +/- 0.6 pg/ml 4 hours after reperfusion; p < 0.05), which returned to normal (0.7 +/- 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 +/- 0.8 pg/ml vs. 0.1 +/- 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05) and at 48 hours (6.4 +/- 0.6 pg/ml vs. 0 +/- 0.1 pg/ml, control vs. hypoxic endothelial cells; p < 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 +/- 0.6 vs. 6.4 +/- 1.1 pg/ml, control vs. hypoxic astrocytes; p < 0.05). Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.
The continuous release of nitric oxide (NO) is required to maintain basal cerebrovascular tone. Oxyhemoglobin, a putative spasmogen, rapidly binds NO, implicating loss of NO in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). If vasospasm is mediated by depletion of NO in the vessel wall, it should be reversible by replacement with NO. To investigate this hypothesis, the authors placed blood clots around the right middle cerebral artery (RMCA) of four cynomolgus monkeys; four unoperated animals served as controls. Arteriography was performed before and 7 days after surgery to assess the presence and degree of vasospasm, which was quantified in the anteroposterior (AP) projection by computerized image analysis. On Day 7, cortical cerebral blood flow (CBF) in the distribution of the right MCA was measured during four to six runs in the right internal carotid artery (ICA) of brief infusions of saline followed by NO solution. Arteriography was performed immediately after completing the final NO infusion in three of the four animals with vasospasm. Right MCA blood flow velocities were obtained using transcranial Doppler before, during, and after NO infusion in two vasospastic animals. After ICA NO infusion, arteriographic vasospasm resolved (mean percent of preoperative AP area, 55.9%); that is, the AP areas of the proximal portion of the right MCA returned to their preoperative values (mean 91.4%; range 88%-96%). Compared to ICA saline, during ICA NO infusion CBF increased 7% in control animals and 19% in vasospastic animals (p < 0.002) without significant changes in other physiological parameters. During NO infusion, peak systolic right MCA CBF velocity decreased (130 to 109 cm/sec and 116 to 76 cm/sec) in two vasospastic animals. The effects of ICA NO on CBF and CBF velocity disappeared shortly after terminating NO infusion. Intracarotid infusion of NO in a primate model of vasospasm 1) increases CBF, 2) decreases cerebral vascular resistance, 3) reverses arteriographic vasospasm, and 4) decreases CBF velocity in the vasospastic artery without producing systemic hypotension. These findings indicate the potential for the development of targeted therapy to reverse cerebral vasospasm after SAH.
To establish if interruption of the intradural draining spinal vein or surgical excision are curative treatments for spinal dural arteriovenous fistulas (AVFs), the medical records and radiographic studies of 19 patients with spinal dural AVFs and progressive myelopathy were reviewed. Spinal arteriograms were obtained before and within 2 weeks after surgery in 19 patients, and after a delay of 4 months or more in 11 patients. The mean clinical and arteriographic follow up was at 37 and 35 months, respectively. In the 11 patients who underwent excision of the dural AVF there was no evidence of a residual lesion upon immediate or delayed postoperative arteriography. Surgery in eight patients consisted of simple interruption of the intradural draining vein as it entered the subarachnoid space. In six of these patients the vein draining the AVF intrathecally provided the only venous drainage of the AVF. In these six patients there was no immediate (six of six) or delayed (four of six) arteriographic evidence of residual or recurrent flow through the AVF. Two patients had an AVF with both intra- and extradural venous drainage; after intradural division of the draining vein there was residual flow through the AVF into the extradural venous system. In one of these two patients intrathecal venous drainage was reestablished, which required additional therapy. In the other patient the extradural AVF spontaneously thrombosed and was not evident on delayed follow-up arteriography. In patients with spinal dural AVFs with only intrathecal medullary venous drainage, which includes most patients with these lesions, surgical interruption of the intradural draining vein provides lasting and curative treatment. In patients with both intra- and extradural drainage of the AVF, complete excision of the fistula or interruption of the intra- and extradural venous drainage of the fistula is indicated. In patients in whom a common vessel supplies the spinal cord and the dural AVF, simple surgical interruption of the vein draining the AVF is the treatment of choice, as it provides lasting obliteration of the fistula and it is the only treatment that does not risk arterial occlusion and cord infarction. Simple interruption of the venous drainage of a spinal dural AVF provides lasting occlusion of the fistula, as it does for cranial dural AVFs, if all pathways of venous drainage are interrupted. This result provides further evidence that the venous approach to the treatment of dural AVFs can be used successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.