[1] The North Pacific contains active mid-oceanic ridges and the oldest, Jurassic (166.8 ± 4 Ma), drilled oceanic crust. Its bathymetry is therefore critical to studies of the applicability of thermal contraction models (e.g., the infinite half-space and cooling plate) to the subsidence of seafloor with crustal age. The bathymetry, however, contains seamounts and oceanic islands (e.g., Mid-Pacific Mountains), oceanic plateaus (e.g., Hess, Magellan, and Shatsky), and midplate topographic swells (e.g., Hawaii), which are unrelated to the current plate-scale thermal state of the oceanic lithosphere. We use here a regional-residual separation algorithm called MiMIC to remove these features and to isolate the depths associated with the subsidence of North Pacific oceanic crust. These depths, z (m), increase with time, t (Ma), as z = 3010 + 307 ffi ffi t p until 85 Ma. For greater ages the depths ''flatten'' and asymptotically approach $6.1 km and are well described by z = 6120 À 3010 exp(À0.026t). The flattening is not ''abrupt'' as recently described in z-t curves produced using the mean, median, and mode. As a result, the depths of both young and old seafloor are fit well (mean difference between and observed and calculated depths of 75 ± 54 m 1s) by a single cooling plate model. Using a thermal conductivity, k, of 3.138 mW m À2 as previous studies, however, gives a plate of similar thickness (i.e., thermal thickness, L, of $115 km) but one which is unreasonably hot (i.e., temperature at the base of the plate, T b , of 1522°C) and inexpansive (i.e., coefficient of thermal expansion, a, of 2.57Â10 À5°CÀ1 ). More reasonable values (i.e.,À5°CÀ1 , and L = 120 km) are obtained if the crustal thickness is used to constrain T b and a certain amount of the surface heat flow is allowed to be radiogenically generated within the oceanic lithosphere.
Fluvial floods are typically investigated as 'events' at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975Britain ( −2014, a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (∼46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response times <40 h and documented flood impacts. Furthermore, peak flows tend to occur after 0−13 days of very severe gales causing combined and spatially-distributed, yet differentially time-lagged, wind and flood damages. These findings have implications for emergency responders, insurers and contingency planners worldwide.
Compound weather and climate events are combinations of climate drivers and/or hazards that contribute to societal or environmental risk. Studying compound events often requires a multidisciplinary approach combining domain knowledge of the underlying processes with, for example, statistical methods and climate model outputs. Recently, to aid the development of research on compound events, four compound event types were introduced, namely (a) preconditioned, (b) multivariate, (c) temporally compounding, and (d) spatially compounding events. However, guidelines on how to study these types of events are still lacking. Here, we consider four case studies, each associated with a specific event type and a research question, to illustrate how the key elements of compound events (e.g., analytical tools and relevant physical effects) can be identified. These case studies show that (a) impacts on crops from hot and dry summers can be exacerbated by preconditioning effects of dry and bright springs. (b) Assessing compound coastal flooding in Perth (Australia) requires considering the dynamics of a non-stationary multivariate process. For instance, future mean sea-level rise will lead to the emergence of concurrent coastal and fluvial extremes, enhancing compound flooding risk. (c) In Portugal, deeplandslides are often caused by temporal clusters of moderate precipitation events. Finally, (d) crop yield failures in France and Germany are strongly correlated, threatening European food security through spatially compounding effects. These analyses allow for identifying general recommendations for studying compound events. Overall, our insights can serve as a blueprint for compound event analysis across disciplines and sectors.Plain Language Summary Many societal and environmental impacts from events such as droughts and storms arise from a combination of weather and climate factors referred to as a compound event. Considering the complex nature of these high-impact events is crucial for an accurate assessment of climate-related risk, for example to develop adaptation and emergency preparedness strategies. However, compound event research has emerged only recently, therefore our ability to analyze these events is still BEVACQUA ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.