Global estimates indicate the oceans are responsible for approximately half of the carbon dioxide fixed on Earth. Organisms p5 lm in size dominate open ocean phytoplankton communities in terms of abundance and CO 2 fixation, with the cyanobacterial genera Prochlorococcus and Synechococcus numerically the most abundant and more extensively studied compared with small eukaryotes. However, the contribution of specific taxonomic groups to marine CO 2 fixation is still poorly known. In this study, we show that among the phytoplankton, small eukaryotes contribute significantly to CO 2 fixation (44%) because of their larger cell volume and thereby higher cell-specific CO 2 fixation rates. Within the eukaryotes, two groups, herein called Euk-A and Euk-B, were distinguished based on their flow cytometric signature. Euk-A, the most abundant group, contained cells 1.8±0.1 lm in size while Euk-B was the least abundant but cells were larger (2.8±0.2 lm). The Euk-B group comprising prymnesiophytes (73±13%) belonging largely to lineages with no close cultured counterparts accounted for up to 38% of the total primary production in the subtropical and tropical northeast Atlantic Ocean, suggesting a key role of this group in oceanic CO 2 fixation.
Marine environmental monitoring has tended to focus on site-specific methods of investigation. These traditional methods have low spatial and temporal resolution and are relatively labor intensive per unit area/time that they cover. To implement the Marine Strategy Framework Directive (MSFD), European Member States are required to improve marine monitoring and design monitoring networks. This can be achieved by developing and testing innovative and cost-effective monitoring systems, as well as indicators of environmental status. Here, we present several recently developed methodologies and technologies to improve marine biodiversity indicators and monitoring methods. The innovative tools are discussed concerning the technologies presently utilized as well as the advantages and disadvantages of their use in routine monitoring. In particular, the present analysis focuses on: (i) molecular approaches, including microarray, Real Time quantitative PCR (qPCR), and metagenetic (metabarcoding) tools; (ii) optical (remote) sensing and acoustic methods; and (iii) in situ monitoring instruments. We also discuss Danovaro et al. Innovative Approaches in Marine Monitoring their applications in marine monitoring within the MSFD through the analysis of case studies in order to evaluate their potential utilization in future routine marine monitoring. We show that these recently-developed technologies can present clear advantages in accuracy, efficiency and cost.
Coral reefs harbor diverse assemblages of organisms yet the majority of this diversity is hidden within the three dimensional structure of the reef and neglected using standard visual surveys. This study uses Autonomous Reef Monitoring Structures (ARMS) and amplicon sequencing methodologies, targeting mitochondrial cytochrome oxidase I and 18S rRNA genes, to investigate changes in the cryptic reef biodiversity. ARMS, deployed at 11 sites across a near- to off-shore gradient in the Red Sea were dominated by Porifera (sessile fraction), Arthropoda and Annelida (mobile fractions). The two primer sets detected different taxa lists, but patterns in community composition and structure were similar. While the microhabitat of the ARMS deployment affected the community structure, a clear cross-shelf gradient was observed for all fractions investigated. The partitioning of beta-diversity revealed that replacement (i.e. the substitution of species) made the highest contribution with richness playing a smaller role. Hence, different reef habitats across the shelf are relevant to regional diversity, as they harbor different communities, a result with clear implications for the design of Marine Protected Areas. ARMS can be vital tools to assess biodiversity patterns in the generally neglected but species-rich cryptic benthos, providing invaluable information for the management and conservation of hard-bottomed habitats over local and global scales.
In an era of coral reef degradation, our knowledge of ecological patterns in reefs is biased towards large conspicuous organisms. The majority of biodiversity, however, inhabits small cryptic spaces within the framework of the reef. To assess this biodiverse community, which we term the ‘reef cryptobiome’, we deployed 87 autonomous reef monitoring structures (ARMS), on 22 reefs across 16 degrees latitude of the Red Sea. Combining ARMS with metabarcoding of the mitochondrial cytochrome oxidase I gene, we reveal a rich community, including the identification of 14 metazoan phyla within 10 416 operational taxonomic units (OTUs). While mobile and sessile subsets were similarly structured along the basin, the main environmental driver was different (particulate organic matter and sea surface temperature, respectively). Distribution patterns of OTUs showed that only 1.5% were present in all reefs, while over half were present in a single reef. On both local and regional scales, the majority of OTUs were rare. The high heterogeneity in community patterns of the reef cryptobiome has implications for reef conservation. Understanding the biodiversity patterns of this critical component of reef functioning will enable a sound knowledge of how coral reefs will respond to future anthropogenic impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.