Cannabis (Cannabis sativa L.) is a dioecious plant that produces both male and female inflorescences. In nature, male and female plants can be found with nearly equal frequency, which determines species out-crossing. In cannabis farming, only female plants are preferred due to their high yield of cannabinoids. In addition to unfavorable male plants, commercial production of cannabis faces the appearance of hermaphroditic inflorescences, species displaying both pistillate flowers and anthers. Such plants can out-cross female plants, simultaneously producing undesired seeds. The problem of hermaphroditic cannabis triggered a search for analytical tools that can be used for their rapid detection and identification. In this study, we investigate the potential of Raman spectroscopy (RS), an emerging sensing technique that can be used to probe plant biochemistry. Our results show that the biochemistry of male, female and hermaphroditic cannabis plants is drastically different which allows for their confirmatory identification using a hand-held Raman spectrometer. Furthermore, the coupling of machine learning approaches enables the identification of hermaphrodites with 98.7% accuracy, whereas both male and female plants can be identified with 100% accuracy. Considering the label-free, non-invasive and non-destructive nature of RS, the developed optical sensing approach can transform cannabis farming in the U.S. and overseas.
British sex survey shows popularity of monogamy Sexual Attitudes and Lifestyles is published by Blackwell Scientific, price C29.50. The paperback edition, Sexual Behaviour in Britain, is published by Penguin, price ,C15.00.
Cardiovascular disease is a common cause of death and disease in patients with end-stage renal disease (ESRD). Registry data show that 41% of deaths in ESRD patients are due to a variety of cardiovascular causes, such as acute myocardial infarction, congestive heart failure, arrhythmia/sudden cardiac death, and stroke. In the general population, each of these disease entities in isolation can be effectively managed according to evidence from large clinical trials and evidence-based guidelines. However, many of these trials did not include patients with ESRD, limiting the transferability of this evidence to the care of patients on dialysis. To complicate matters, cardiovascular events in ESRD patients are likely augmented from a unique interplay of cardiac risk due to both reduced kidney function and the necessity for artificial renal replacement therapies. In this light, the patient on dialysis is subjected to a series of unique factors: the continued presence of the metabolic perturbations of uremia and the peculiar environment of the dialysis treatment itself. Since the ESRD heart is under a considerable amount of strain due to chronic volume overload, rapid electrolyte and fluid shifts, and accelerated vascular calcification, management can be complex and outcomes multifactorial. In this review, we summarize the current evidence regarding management of acute myocardial infarction, heart failure, sudden cardiac death, and atrial fibrillation. We also address modifiable risk factors related to the dialysis procedure itself and highlight recent randomized controlled trials that included dialysis patients and measured important cardiovascular outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.