The paper studies Dirichlet forms on the classical Wiener space and the Wiener space over non-compact complete Riemannian manifolds. The diffusion operator is almost everywhere an unbounded operator on the Cameron-Martin space. In particular, it is shown that under a class of changes of the reference measure, quasi-regularity of the form is preserved.We also show that under these changes of the reference measure, derivative and divergence are closable with certain closable inverses. We first treat the case of the classical Wiener space and then we transfer the results to the Wiener space over a Riemannian manifold.
This thesis consists of two papers which focuses on a particular diffusion type Dirichlet form E(F, G) = ADF, DG H dν,Here S i , i ∈ N, is the basis in the Cameron-Martin space, H, consisting of the Schauder functions, and ν denotes the Wiener measure.In Paper I, we let λ i , i ∈ N, vary over the space of wiener trajectories in a way that the diffusion operator A is almost everywhere an unbounded operator on the CameronMartin space. In addition we put a weight function ϕ on the Wiener measure ν and show that under these changes of the reference measure, the Malliavin derivative and divergence are closable operators with certain closable inverses. It is then shown that under certain conditions on λ i , i ∈ N , and these changes of reference measure, the Dirichlet form is quasi-regular. This is done first in the classical Wiener space and then the results are transferred to the Wiener space over a Riemannian manifold.Paper II focuses on the case when λ i , i ∈ N, is a sequence of non-decreasing real numbers. The process X associated to (E, D(E)) is then an infinite dimensional OrnsteinUhlenbeck process. In this case we show that the distributions of a sequence of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of the infinite dimensional Ornstein-Uhlenbeck process. We also investigate the quadratic variation for this process, both in the classical sense and in the recent framework of stochastic calculus via regularization. Since the process is Banach space valued, the tensor quadratic variation is an appropriate tool to establish the Itô formula for the infinite dimensional Ornstein-Uhlenbeck process X. Sufficient conditions are presented for the scalar as well as the tensor quadratic variation to exist. v Populärvetenskaplig sammanfattningEn stokastisk process är en matematisk representation av hur ett slumpmässigt system utvecklas under tid. Exempelvis är värdet på en aktie en endimensionell process och positionen på en partikel som rör sig slumpmässigt i rummet är en tredimensionell process. Det är svårare att föreställa sig och analysera processer som tar värden i oändligdimen-sionella rum men det finns olika sätt att behandla problemet matematiskt. Ett sätt är att studera så kallade Dirichletformer. En Dirichletform är ett matematiskt objekt inom området potentialteori. Genom att använda sig av en sådan framställning får man tillgång till de verktyg som finns inom potentialteorins ämnesområde vilket kan göra det matematiska arbetet enklare.Det visar sig att endast vissa Dirichletformer har en motsvarande stokastisk process. I det första pappret i den här avhandlingen behandlas en viss typ av Dirichletformer där den så kallade diffusionen ökar för varje dimension. Man kan säga att diffusionen är hastigheten på slumprörelsen. Vi visar hur snabbt diffusionen får öka för att slutprocessen ska vara väldefinierad. Pappret behandlar även fallet då processen lever i ett krökt rum, på en mångfald, som exempel kan man tänka sig ytan av en ballong istället för ytan på ...
The paper studies a class of Ornstein–Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron–Martin space. It is shown that the distributions of certain finite dimensional Ornstein–Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein–Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.