Schizophrenia is a neurodevelopmental disorder that affects up to 1% of the general population. Various genes show associations with schizophrenia and a very weak nominal association with the tight junction protein, claudin-5, has previously been identified. Claudin-5 is expressed in endothelial cells forming part of the blood-brain barrier (BBB). Furthermore, schizophrenia occurs in 30% of individuals with 22q11 deletion syndrome (22q11DS), a population who are haploinsufficient for the claudin-5 gene. Here, we show that a variant in the claudin-5 gene is weakly associated with schizophrenia in 22q11DS, leading to 75% less claudin-5 being expressed in endothelial cells. We also show that targeted adeno-associated virus-mediated suppression of claudin-5 in the mouse brain results in localized BBB disruption and behavioural changes. Using an inducible 'knockdown' mouse model, we further link claudin-5 suppression with psychosis through a distinct behavioural phenotype showing impairments in learning and memory, anxiety-like behaviour and sensorimotor gating. In addition, these animals develop seizures and die after 3-4 weeks of claudin-5 suppression, reinforcing the crucial role of claudin-5 in normal neurological function. Finally, we show that anti-psychotic medications dose-dependently increase claudin-5 expression in vitro and in vivo while aberrant, discontinuous expression of claudin − 5 in the brains of schizophrenic patients post mortem was observed compared to age-matched controls. Together, these data suggest that BBB disruption may be a modifying factor in the development of schizophrenia and that drugs directly targeting the BBB may offer new therapeutic opportunities for treating this disorder.
The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with repetitive mild traumatic brain injury. In recent years, attention has focused on emerging evidence linking the development of CTE to concussive injuries in athletes and military personnel; however, the underlying molecular pathobiology of CTE remains unclear. Here, we provide evidence that the blood-brain barrier (BBB) is disrupted in regions of dense perivascular p-Tau accumulation in a case of CTE. Immunoreactivity patterns of the BBB-associated tight junction components claudin-5 and zonula occludens-1 were markedly discontinuous or absent in regions of perivascular p-Tau deposition; there was also immunohistochemical evidence of a BBB in these foci. Because the patient was diagnosed premortem clinically as having progressive supranuclear palsy (PSP), we also compromised that the CTE alterations appear to be distinct from those in the brain of a patient with PSP. This report represents the first description of BBB dysfunction in a pathologically proven CTE case and suggests a vascular component in the postconcussion cascade of events that may ultimately lead to development of a progressive degenerative disorder. BBB dysfunction may represent a correlate of neural dysfunction in live subjects suspected of being at risk for development of CTE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.