Numerical design optimization algorithms are highly sensitive to the particular formulation of the optimization problems they are given. The formulation of the search space, the objective function and the constraints will generally have a large impact on the duration of the optimization process as well as the quality of the resulting design. Furthermore, the best formulation will vary from one application domain to another, and from one problem to another within a given application domain. Unfortunately, a design engineer may not know the best formulation in advance of attempting to set up and run a design optimization process. In order to attack this problem, we have developed a software environment that supports interactive formulation, testing and reformulation of design optimization strategies. Our system represents optimization strategies in terms of second-order data ow graphs. Reformulations of strategies are implemented a s t r ansformations between data ow graphs. The system permits the user to interactively generate and searc h a s p ace of design optimization strategies, and experimentally evaluate their performance on test problems, in order to nd a strategy that is suitable for his application domain. The system has been implemented in a domain independent fashion, and is being tested in the domain of racing yacht design.
Numerical design optimization algorithms are highly sensitive to the particular formulation of the optimization problems they are given. The formulation of the search space, the objective function and the constraints will generally have a large impact on the duration of the optimization process as well as the quality of the resulting design. Furthermore, the best formulation will vary from one application domain to another, and from one problem to another within a given application domain. Unfortunately, a design engineer may not know the best formulation in advance of attempting to set up and run a design optimization process. In order to attack this problem, we have developed a software environment that supports interactive formulation, testing and reformulation of design optimization strategies. Our system represents optimization strategies in terms of second-order data ow graphs. Reformulations of strategies are implemented a s t r ansformations between data ow graphs. The system permits the user to interactively generate and searc h a s p ace of design optimization strategies, and experimentally evaluate their performance on test problems, in order to nd a strategy that is suitable for his application domain. The system has been implemented in a domain independent fashion, and is being tested in the domain of racing yacht design.
Physical systems can be modelled at many levels of approximation. The right model depends on the problem to be solved. In many cases, a combination of models will be more effective than a single model. Our research investigates this idea in the context of engineering design optimization. We present a family of strategies that use multiple models for unconstrained optimization of engineering designs. The strategies are useful when multiple approximations of an objective function can be implemented by compositional modelling techniques. We show how a compositional modelling library can be used to construct a variety of locally calibratable approximation schemes that can be incorporated into the optimization strategies. We analyze the optimization strategies and approximation schemes to formulate and prove sufficient conditions for correctness and convergence. We also report experimental tests of our methods in the domain of sailing yacht design. Our results demonstrate dramatic reductions in the CPU time required for optimization, on the problems we tested, with no significant loss in design quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.