Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses 1 – 3 . In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins 4 – 8 , particularly those containing post-translational modifications required for transcriptional regulation 9 – 11 . Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation 12 – 14 . However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.
SARS-CoV-2 emerged in China at the end of 2019 and caused the global pandemic of COVID-19, a disease with high morbidity and mortality. While our understanding of this novel virus is rapidly increasing, gaps remain in our understanding of how SARS-CoV-2 can effectively suppress host cell antiviral responses. Recent work on other viruses has demonstrated a novel mechanism through which viral proteins can mimic critical regions of human histone proteins. Histone proteins are responsible for governing genome accessibility and their precise regulation is critical for a cell’s ability to control transcription and respond to viral threats. Here, we show that the protein encoded by ORF8 (Orf8) in SARS-CoV-2 functions as a histone mimic of two critical histone 3 sites containing an ARKS motif. Orf8 expression in cells disrupts multiple critical histone post-translational modifications (PTMs) while Orf8 lacking this histone mimic motif does not. Orf8 binds to numerous histone-associated proteins and to DNA, and is itself acetylated within the histone mimic site. Importantly, SARS-CoV-2 infection of multiple susceptible cell types causes the same global changes of histone post-translational modifications that are disrupted by Orf8 expression; these include induced pluripotent stem cell-derived alveolar type 2 cells (iAT2) and cardiomyocytes (iCM) and postmortem patient lung tissue. These findings demonstrate a novel function for the poorly understood SARS-CoV-2 ORF8 encoded protein and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Notably, this work provides a potential mechanism for emerging findings from human patients indicating that ORF8 deletion results in less severe illness and describes a potentially druggable pathway that may contribute to the virulence of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.