At the onset of Drosophila metamorphosis, the steroid hormone 20-OH ecdysone directly induces a small number of early puffs in the polytene chromosomes of the larval salivary gland. Proteins encoded by the early genes corresponding to these transcriptional puffs then regulate the activity of both the early puffs themselves and a much larger set of late puffs. Three of these early genes encode transcription factors that play critical regulatory roles during metamorphosis. Here we report the cloning, DNA sequence, genomic structure, ecdysone inducibility, and temporal expression of an early gene residing in the 23E early puff and denoted E23 (Early gene at 23). In contrast to other early genes, E23 encodes a protein with similarity to ATP-binding cassette transporters. Using heat shock-inducible transgenes, we found that E23 overexpression not only produces phenotypic abnormalities and lethality, but also interferes with ecdysone-mediated gene activation, demonstrating that E23 is capable of modulating the ecdysone response. Our results suggest the existence of a previously unrecognized regulatory mechanism for modulating steroid hormone signaling in Drosophila.
At the onset of metamorphosis in Drosophila melanogaster, the steroid hormone 20-OH ecdysone induces a small number of early and early-late puffs in the polytene chromosomes of the third-instar larval salivary gland whose activity is required for regulating the activity of a larger set of late puffs. Most of the corresponding early and early-late genes have been found to encode transcription factors that regulate a much larger set of late genes. In contrast, we describe here the identification of an ecdysone-regulated gene in the 62E early-late puff, denoted D-spinophilin, that encodes a protein similar to the mammalian protein spinophilin/neurabin II. The D-spinophilin protein is predicted to contain a highly conserved PP1-binding domain and adjacent PDZ domain, as well as a coiled-coil domain and SAM domain, and belongs to a family of related proteins from diverse organisms. Transcription of D-spinophilin is correlated with 62E puff activity during the early stages of metamorphosis and is ecdysone-dependent, making this the first member of this gene family shown to be regulated by a steroid hormone. Examination of the dynamic patterns of D-spinophilin expression during the early stages of metamorphosis are consistent with a role in central nervous system metamorphosis as well as a more general role in other tissues. As D-spinophilin appears to be the only member of this gene family in Drosophila, its study provides an excellent opportunity to elucidate the role of an important adaptor protein in a genetic model organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.