Wingless (Wg) is an important signaling molecule in the development of Drosophila, but little is known about its signal transduction pathway. Genetic evidence indicates that another segment polarity gene, dishevelled (dsh) is required for Wg signaling. We have recently developed a cell culture system for Wg protein activity, and using this in vitro system as well as intact Drosophila embryos, we have analyzed biochemical changes in the Dsh protein as a consequence of Wg signaling. We find that Dsh is a phosphoprotein, normally present in the cytoplasm. Wg signaling generates a hyperphosphorylated form of Dsh, which is associated with a membrane fraction. Overexpressed Dsh becomes hyperphosphorylated in the absence of extracellular Wg and increases levels of the Armadillo protein, thereby mimicking the Wg signal. A deletional analysis of Dsh identifies several conserved domains essential for activity, among which is a so-called GLGF/DHR motif. We conclude that dsh, a highly conserved gene, is not merely a permissive factor in Wg signaling but encodes a novel signal transduction molecule, which may function between the Wg receptor and more downstream signaling molecules.
In mice, there is evidence suggesting that the development of head and trunk structures is organized by distinctly separated cell populations. The head organizer is located in the anterior visceral endoderm (AVE) and the trunk organizer in the node and anterior primitive streak. In amphibians, Spemann's organizer, which is homologous to the node, partially overlaps with anterior endoderm cells expressing homologues of the AVE markers cerberus, Hex and Hesx1. For mice, this raises the question of whether the AVE and node are independent of each other, as suggested by their anatomical separation, or functionally interdependent as is the case in amphibians. Chordin and Noggin are secreted bone morphogenetic protein (BMP) antagonists expressed in the mouse node, but not in the AVE. Here we show that mice double-homozygous mutants that are for chordin and noggin display severe defects in the development of the prosencephalon. The results show that BMP antagonists in the node and its derivatives are required for head development.
Despite the wealth of different actin structures formed, only two actin nucleation factors are well established in vertebrates: the Arp2/3 complex and formins. Here, we describe a further nucleator, cordon-bleu (Cobl). Cobl is a brain-enriched protein using three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding. Cobl promotes nonbundled, unbranched filaments. Filament formation relies on barbed-end growth and requires all three Cobl WH2 domains and the extended linker L2. We suggest that the nucleation power of Cobl is based on the assembly of three actin monomers in cross-filament orientation. Cobl localizes to sites of high actin dynamics and modulates cell morphology. In neurons, induction of both neurites and neurite branching is dramatically increased by Cobl expression-effects that critically depend on Cobl's actin nucleation ability. Correspondingly, Cobl depletion results in decreased dendritic arborization. Thus, Cobl is an actin nucleator controlling neuronal morphology and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.