The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo, in part based on reliability of the analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to demonstrate the reliability of computational analysis pipelines in neuroimaging.
Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models provide information about brain connectivity and are sensitive to the physical properties of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest because they were shown to be more sensitive to microstructural alterations in health and diseases than measures based on the total anisotropy of diffusion which are highly confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI in the Diffusion in Python (DIPY) project—a large collaborative open-source project which aims to provide well-tested, well-documented and comprehensive implementation of different dMRI techniques. We demonstrate the functionality of our methods in numerical simulations with known ground truth parameters and in openly available datasets. A particular strength of our DKI implementations is that it pursues several extensions of the model that connect it explicitly with microstructural models and the reconstruction of 3D white matter fiber bundles (tractography). For instance, our implementations include DKI-based microstructural models that allow the estimation of biophysical parameters, such as axonal water fraction. Moreover, we illustrate how DKI provides more general characterization of non-Gaussian diffusion compatible with complex white matter fiber architectures and gray matter, and we include a novel mean kurtosis index that is invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY provides a well-tested, well-documented and comprehensive reference implementation for DKI. It provides a platform for wider use of DKI in research on brain disorders and in cognitive neuroscience.
The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo, in part based on the reliability of analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability, and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to establish the reliability of computational analysis pipelines in neuroimaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.