Gridded precipitation and temperature products are inherently uncertain because of myriad factors, including interpolation from a sparse observation network, measurement representativeness, and measurement errors. Generally uncertainty is not explicitly accounted for in gridded products of precipitation or temperature; if it is represented, it is often included in an ad hoc manner. A lack of quantitative uncertainty estimates for hydrometeorological forcing fields limits the application of advanced data assimilation systems and other tools in land surface and hydrologic modeling. This study develops a gridded, observation-based ensemble of precipitation and temperature at a daily increment for the period 1980–2012 for the conterminous United States, northern Mexico, and southern Canada. This allows for the estimation of precipitation and temperature uncertainty in hydrologic modeling and data assimilation through the use of the ensemble variance. Statistical verification of the ensemble indicates that it has generally good reliability and discrimination of events of various magnitudes but has a slight wet bias for high threshold events (>50 mm). The ensemble mean is similar to other widely used hydrometeorological datasets but with some important differences. The ensemble product produces a more realistic occurrence of precipitation statistics (wet day fraction), which impacts the empirical derivation of other fields used in land surface and hydrologic modeling. In terms of applications, skill in simulations of streamflow in 671 headwater basins is similar to other coarse-resolution datasets. This is the first version, and future work will address temporal correlation of precipitation anomalies, inclusion of other data streams, and examination of topographic lapse rate choices.
No abstract
The first station of the Long Wavelength Array (LWA1) was completed in April 2011 and is currently performing observations resulting from its first call for proposals in addition to a continuing program of commissioning and characterization observations. The instrument consists of 258 dual-polarization dipoles, which are digitized and combined into beams. Four independently-steerable dual-polarization beams are available, each with two tunings of 16 MHz bandwidth that can be independently tuned to any frequency between 10 MHz and 88 MHz. The system equivalent flux density for zenith pointing is ∼3 kJy and is approximately independent of frequency; this corresponds to a sensitivity of ∼5 Jy/beam (5σ, 1 s); making it one of the most sensitive meter-wavelength radio telescopes. LWA1 also has two "transient buffer" modes which allow coherent recording from all dipoles simultaneously, providing instantaneous all-sky field of view. LWA1 provides versatile and unique new capabilities for Galactic science, pulsar science, solar and planetary science, space weather, cosmology, and searches for astrophysical transients.Results from LWA1 will detect or tightly constrain the presence of hot Jupiters within 50 parsecs of Earth. LWA1 will provide excellent resolution in frequency and in time to examine phenomena such as solar bursts, and pulsars over a 4:1 frequency range that includes the poorly understood turnover and steep-spectrum regimes. Observations to date have proven LWA1's potential for pulsar observing, and just a few seconds with the completed 256-dipole LWA1 provide the most sensitive images of the sky at 23 MHz obtained yet. We are operating LWA1 as an open skies radio observatory, offering ∼2000 beamhours per year to the general community. At the same time, we are operating a backend for all-sky imaging and total-power transient detection, approximately 6840 hours per year (∼78% duty cycle).
Abstract-LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (≈ 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independentlysteerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.
▪ Abstract Conservation in New Zealand is failing to halt an ongoing decline in biodiversity. Classical problems of ecosystem loss and fragmentation have largely been countered in some regions by reservation of 30% of total land area. Unsustainable harvesting of native biodiversity has stopped; indeed harvesting of terrestrial species is rare. In contrast, marine reserves do not cover even 1% of the managed area, and harvest of native species, some of it unsustainable, are a major industry. Introduced pests, especially mammals, are the overwhelming conservation problem. Legislation, management, and considerable public opinion is based on preservationist ideals that demand the sanctity of native land biodiversity. Considerable success in threatened species management, island eradications, and mainland control of pests is increasing opportunities for restoration. New legislation is increasingly built on concepts of sustainability and offers the opportunity for integrating conservation, use, and development. Realization of these opportunities requires greater understanding of the relative merits of preservation versus sustainability, the dynamics and costs of pest control, the need for ecosystem processes in addition to individual species, and the involvement of people, especially the rights of indigenous Maori. Understanding marine environments and linking attitudes to land and sea is also a challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.