BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously “bridge” missing nerve segments and “babysit” regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and “stretch-grown” axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs.
Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine‐derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof‐of‐concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro‐regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen‐based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects ‐ likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.
We used quantitative histochemistry to measure the size of the extracellular space (ESC) in various regions of the rabbit heart. When inulin, sucrose, and sorbitol were used as ECS markers, the ECS of the AV-nodal tissue was found to be, respectively, 2.4, 2.2, and 2.5 times larger than that of left ventricular muscle. Glucose was also measured over a 50-fold serum concentration range as an extracellular marker for AV-nodal tissue, left ventricular muscle, and Purkinje fibers. Measurements with glucose also revealed that the ECS of the AV node was 2.5-2.8 times larger than that of ventricular muscle. In contrast, the ECS of the AV node was the same as that of Purkinje fibers when glucose was used as an extracellular marker. ATP content, measured as an intracellular marker, was similar in both AV-nodal and contractile tissue. Collectively, the data obtained with all extracellular markers indicate that the ECS of the AV-nodal region is approximately 2.5 times larger than that of adjacent contractile tissue. Differences in the size of the ECS in various regions of the heart probably have functional significance and should be considered appropriately during the interpretation of data obtained by biochemical and densitometric approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.