Abstract:Analysis of sample survey data often requires adjustments for missing values in the variables of interest. Standard adjustments based on item imputation or on propensity weighting factors rely on the availability of auxiliary variables for both responding and non-responding units. Their application can be challenging when the auxiliary variables are numerous and are themselves subject to incompletedata problems. This paper shows how classification and regression trees and forests can overcome these incomplete-data patterns similar to those in the abovementioned survey. Their efficiency loss under parametric conditions most favorable to likelihood methods is observed to be between 10-25%.
In the past several years a wide range of methods for the construction of regression trees and other estimators based on the recursive partitioning of samples have appeared in the statistics literature. Many applications involve data collected through a complex sample design. At present, however, relatively little is known regarding the properties of these methods under complex designs. This article proposes a method for incorporating information about the complex sample design when building a regression tree using a recursive partitioning algorithm. Sufficient conditions are established for asymptotic design L 2 consistency of these regression trees as estimators for an arbitrary regression function. The proposed method is illustrated with Occupational Employment Statistics establishment survey data linked to Quarterly Census of Employment and Wage payroll data of the Bureau of Labor Statistics. Performance of the nonparametric estimator is investigated through a simulation study based on this example.
This article outlines a framework for formal description, justification and evaluation in development of architectures for large-scale statistical production systems. Following an introduction of the main components of the framework, we consider four related issues: (1) Use of some simple schematic models for survey quality, cost, risk, and stakeholder utility to outline several groups of questions that may inform decisions on system design and architecture. (2) Integration of system architecture with models for total survey quality (TSQ) and adaptive total design (ATD). (3) Possible use of concepts from the Generic Statistical Business Process Model (GSBPM) and the Generic Statistical Information Model (GSIM). (4) The role of governance processes in the practical implementation of these ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.