Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in SOEPpapers on Multidisciplinary Panel Data Research at DIW BerlinThis series presents research findings based either directly on data from the German SocioEconomic Panel Study (SOEP) or using SOEP data as part of an internationally comparable data set (e.g. CNEF, ECHP, LIS, LWS, CHER/PACO). SOEP is a truly multidisciplinary household panel study covering a wide range of social and behavioral sciences: economics, sociology, psychology, survey methodology, econometrics and applied statistics, educational science, political science, public health, behavioral genetics, demography, geography, and sport science.The decision to publish a submission in SOEPpapers is made by a board of editors chosen by the DIW Berlin to represent the wide range of disciplines covered by SOEP. There is no external referee process and papers are either accepted or rejected without revision. Papers appear in this series as works in progress and may also appear elsewhere. They often represent preliminary studies and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be requested from the author directly.Any opinions expressed in this series are those of the author(s) and not those of DIW Berlin.Research disseminated by DIW Berlin may include views on public policy issues, but the institute itself takes no institutional policy positions. AbstractThe paper gives an overview of two experiments implemented in the German Socio-Economic Panel (SOEP) considering the effect of monetary incentives on cross-sectional and longitudinal response propensities. We conclude that the overall effects of monetary incentives on response rates are positive compared to the "classic" SOEP setting, where a charity lottery ticket is offered as an incentive. In the cross-section, cash incentives are associated with a higher response rate as well as a lower rate of partial unit non-response (PUNR) and fewer noncontacts on the household level. Separate analyses for German and immigrant households show that a monetary incentive has a positive effect on immigrant households' participation in subsequent waves. Regarding the regions where the households are located, the high cash incentive has a positive effect on response rates in provincial towns and rural areas. The incentive treatment decreases the likelihood of PUNR in the longitudinal setting by motivating members of participating households who had...
With the growing availability of digital administrative data and the recent advances in machine learning, the use of predictive algorithms in the delivery of labour market policy is becoming more prevalent. In public employment services (PES), predictive algorithms are used to support the classification of jobseekers based on their risk of long-term unem- ployment (profiling), the selection of beneficial active labour market programs (targeting), and the matching of jobseekers to suitable job opportunities (matching). In this chapter, we offer a conceptual introduction to the applications of predictive algorithms for the different functions PES have to fulfil and review the history of their use up to the current state of the practice. In addition, we discuss two issues that are inherent to the use of predictive algorithms: algorithmic fairness concerns and the importance of considering how caseworkers will interact with algorithmic systems and make decisions based on their predictions.
This series presents research findings based either directly on data from the German SocioEconomic Panel Study (SOEP) or using SOEP data as part of an internationally comparable data set (e.g. CNEF, ECHP, LIS, LWS, CHER/PACO). SOEP is a truly multidisciplinary household panel study covering a wide range of social and behavioral sciences: economics, sociology, psychology, survey methodology, econometrics and applied statistics, educational science, political science, public health, behavioral genetics, demography, geography, and sport science.The decision to publish a submission in SOEPpapers is made by a board of editors chosen by the DIW Berlin to represent the wide range of disciplines covered by SOEP. There is no external referee process and papers are either accepted or rejected without revision. Papers appear in this series as works in progress and may also appear elsewhere. They often represent preliminary studies and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be requested from the author directly. show a long-run improvement in health upon retirement. Relief from work-related stress and strain, increased sleep duration and more frequent physical exercise seem to be key mechanisms through which retirement affects health. Moreover, the improvement in health caused by retirement leads to a reduction in healthcare utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.