Twenty-five Early and mid-Cretaceous (145-90 Ma) plutonic suites and belts are defined across Alaska and Yukon, in the northern North American Cordillera, on the basis of lithological, geochemical, isotopic, and geochronometric similarities. These features are combined with aeromagnetic characteristics, magnetic susceptibility measurements, and whole-rock ferric:ferrous ratios to ascertain the distribution of magnetite-and ilmenite-series plutonic belts. Magnetite-series plutonic belts are dominantly associated with the older parts of the plutonic episode and comprise subduction-generated metaluminous plutons that are distributed preferentially in the more seaward localities dominated by primitive tectonic elements. Ilmenite-series plutonic belts comprise slightly younger, slightly peraluminous plutons in more landward localities in pericratonic to continental margin settings. They were likely initiated in response to crustal thickening following terrane collision. The youngest plutonic belt forms a small, but significant, magnetite-series belts in the farthest inboard position, associated with alkalic plutons that were emplaced during weak extension.Intrusion-related metallogenic provinces with distinctive metal associations are distributed, largely in accord with classical redox-sensitive granite-series. Copper, Au, and Fe mineralisation are associated with magnetite-series plutons and tungsten mineralisation associated with ilmenite-series plutons. However, there are some notable deviations from expected associations, as intrusion-related Ag-Pb-Zn deposits are few, and significant tin mineralisation is rare. Most significantly, many gold deposits and occurrences are associated with ilmenite-series plutons: these form the basis for the newly recognized reduced intrusion-related gold deposit model.
Neoproterozoic to Paleozoic slope-to-basin facies continental margin strata underlie area ~700 × 200 km across central Yukon Territory, Canada, and collectively defi ne the Selwyn Basin. In a Cordilleran framework, Selwyn Basin strata form a strongly deformed and thrust-faulted package located between the Mackenzie foreland fold-and-thrust belt, and accreted terranes and displaced elements of the ancient North American continental margin. Orogeny commenced in the Jurassic as exotic elements of the composite Yukon-Tanana terrane overrode the ancient continental margin. Collision-related deformation had ceased by ca. 100 Ma, and was followed by a Late Cretaceous (post-85 Ma) dextral transcurrent regime, which laterally displaced elements of the newly assembled continental margin along the orogen-parallel Tintina fault.In western Selwyn Basin, more than 100 km of structural overlap was accommodated on two main detachments, the Robert Service and underlying Tombstone thrust faults. Internal deformation within the thrust sheets is intense, characterized by shearrelated folds and fabrics. Metamorphic grade reaches lower to middle greenschist facies at the deepest structural levels exposed, and is characterized by chlorite-muscovite schists. The onset of deformation is constrained by the Late Jurassic age of the youngest units deformed during orogeny. The end of ductile deformation is constrained by new 40 Ar/ 39 Ar ages for metamorphic muscovite that range from 104 to 100 Ma. Due to the low metamorphic grade, these ages are interpreted to closely follow the waning of deformation. At ca. 93 ± 3 Ma, isolated granitic intrusions of the Tombstone-Tungsten magmatic belt were emplaced across the western Selwyn Basin in a tensional, postcollisional regime.Restoration of displacement on the Tintina fault places the western Selwyn Basin adjacent to the Yukon-Tanana terrane uplands of east-central Alaska in the Early to mid-Cretaceous. Despite their adjacent positioning in cross-orogen section during orogenesis, the two elements feature some signifi cant differences in Jurassic-Cretaceous deformation. Most notably, the Yukon-Tanana terrane uplands record a signifi cant extensional event at 120-105 Ma, which resulted in NW-SE-oriented extension, exhumation of deep structural levels, and voluminous felsic plutonism. In contrast, western Selwyn Basin did not undergo equivalent uplift and extension, and features temporally and spatially restricted plutonism. Within an orogenic framework, the Yukon-Tanana terrane uplands can therefore be considered to represent an exhumed core characterized by high heat fl ow, whereas the western Selwyn Basin represents an immediate northeastern salient to the exhumed core. These differences have important implications for the geodynamic setting of mid-Cretaceous plutonism across these two major lithologic-tectonic entities of the northern Cordillera.
The Tombstone, Mayo and Tungsten plutonic suites of granitic intrusions, collectively termed the Tombstone-Tungsten Belt, form three geographically, mineralogically, geochemically and metallogenically distinct plutonic suites. The granites (sensu lato) intruded the ancient North American continental margin of the northern Canadian Cordillera as part of a single magmatic episode in the mid-Cretaceous (96–90 Ma). The Tombstone Suite is alkalic, variably fractionated, slightly oxidised, contains magnetite and titanite, and has primary, but no xenocrystic, zircon. The Mayo Suite is sub-alkalic, metaluminous to weakly peraluminous, fractionated, but with early felsic and late mafic phases, moderately reduced with titanite dominant, and has xenocrystic zircon. The Tungsten Suite is peraluminous, entirely felsic, more highly fractionated, reduced with ilmenite dominant, and has abundant xenocrystic zircon. Each suite has a distinctive petrogenesis. The Tombstone Suite was derived from an enriched, previously depleted lithospheric mantle, the Tungsten Suite is from the continental crust including, but not dominated by, carbonaceous pelitic rocks, and the Mayo Suite is from a similar sedimentary crustal source, but is mixed with a distinct mafic component from an enriched mantle source.Each suite has a distinctive metallogeny that is related to the source and redox characteristics of the magma. The Tombstone Suite has a Au-Cu-Bi association that is characteristic of most oxidised and alkalic magmas, but also has associated, and enigmatic, U-Th-F mineralisation. The reduced Tungsten Suite intrusions are characterised by world-class tungsten skarn deposits with less significant Cu, Zn, Sn and Mo anomalies. The Mayo Suite intrusions are characteristically gold-enriched, with associated As, Bi, Te and W associations. All suites also have associated, but distal and lower temperature Ag-Pb- and Sb-rich mineral occurrences. Although processes such as fractionation, volatile enrichment and phase separation are ultimately required to produce economic concentrations of ore elements from crystallising magmas, the nature of the source materials and their redox state play an important role in determining which elements are effectively concentrated by magmatic processes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.