We have fabricated organic thin-film transistor (OTFT)-driven active matrix liquid crystal displays on flexible polymeric substrates. These small displays have 16×16 pixel polymer-dispersed liquid crystal arrays addressed by pentacene active layer OTFTs. The displays were fabricated using a low-temperature process (<110 °C) on flexible polyethylene naphthalate film and are operated as reflective active matrix displays.
We report on the development of a dilute suspension of ferroelectric particles in a nematic liquid-crystal (LC) host. We found that the submicron particles do not disturb the LC alignment and the suspension macroscopically appears similar to a pure LC with no readily apparent evidence of dissolved particles. The suspension possesses enhanced dielectric anisotropy, and is sensitive to the sign of an applied electric field.
It is demonstrated that the reflective properties and bistability of cholesteric liquid crystals can be controlled by proper surface treatment and dispersed polymers. Dispersing a polymer in the liquid crystal or using a cell with an inhomogeneous surface anchoring creates permanent defects which result in long-term bistability, high contrast at large viewing angles, and gray scale. The wide-angle, reflective feature makes cholesteric materials suitable for displays without backlights and bistability provides flicker-free operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.