Interpretation of reprocessed Ohio Consortium for Continental Refl ection Profi ling (COCORP) OH-1 seismic refl ection profi les indicates four structurally complex Precambrian unconformity-bounded stratigraphic sequences that clarify the relative timing of formation of the Fort Wayne Rift and EastContinent Rift System with respect to the Grenville orogeny. Petrographic examination of sparse deep well samples in the region indicates or suggests sedimentary lithologies beneath the Paleozoic sedimentary cover. Other seismic profi les in the region, some with excellent well control, support our proposed model. A generalized model for the latter part of the Grenville orogeny suggests polyphase sedimentation and deformation with multiple episodes of crustal extension and compression. We propose the following events for Ohio and the surrounding region: (1) a major regional unconformity developed on the Eastern Granite-Rhyolite Province and accreted Grenville terranes; (2) western Ohio became the site of extensive fault-bounded rift basins, beginning with the Fort Wayne Rift and extending into west-central Ohio as the East Continent Rift System; (3) westward-advancing thrust sheets followed with deposition of sediments into newly developed basins; (4) continued Grenville thrusting created foreland basins in a westward progression; and (5) a long period of Neoproterozoic to Middle Cambrian erosion removed much of the foreland basin sedimentary sequences prior to Paleozoic deposition. Erosion in the Ohio region did not remove the large volume of rock as in Canada north of Georgian Bay. Other seismic lines in the region suggest that Grenville-age sedimentary basins are preserved beneath the Phanerozoic from Georgian Bay southward. These new fi ndings demonstrate the importance of using fault-and unconformity-bounded seismic sequences to enhance and clarify the relative timing of Proterozoic events in regions where Paleozoic sedimentary cover exists and core samples are sparse or lacking.
The Fall River Formation around the Black Hills uplift is pervasively fractured by layer-perpendicular joints. Systematic joints in the formation maintain consistent orientations over large areas and are commonly abutted by later-formed fractures, resulting in an orthogonal pattern. There are two major systematic sets, trending northeast and northwest, and one minor set trending north-south. The first two sets define two major fracture domains in the study area. The northwest joint set occupies a southern domain where it is the sole systematic fracture set. The northeast joint set is pervasively established throughout the northern domain, where northwest and north-south fracture sets are also developed in well-defined sectors. There is no genetic or spatial relationship between joint sets and local Laramide monoclines or folds of the region. Instead, the stratigraphic record indicates that joint development originated early in the lithification history of Fall River sandstones. Jointing occurred in response to local and regional extensional stresses that pervaded the northern and southern domains as a result of recurrent movement on basement faults that parallel the regional lineament system and surface structural zones throughout the region. Major uplift of the Black Hills and local fold development during Laramide time merely resulted in passive rotation of the early formed systematic and non-systematic joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.