Uveal melanoma (UM) has a 30% five-year mortality rate, primarily due to liver metastasis. Both angiogenesis and stromagenesis are important mechanisms for the progression of liver metastasis. Pigment epithelium-derived factor (PEDF), an anti-angiogenic and anti-stromagenic protein, is produced by hepatocytes. Exogenous PEDF suppresses metastasis progression; however, the effects of host-produced PEDF on metastasis progression are unknown. We hypothesize that host PEDF inhibits liver metastasis progression through a mechanism involving angiogenesis and stromagenesis. Mouse melanoma cells were injected into the posterior ocular compartment of PEDF-null mice and control mice. After one month, the number, size, and mean vascular density (MVD) of liver metastases were determined. The stromal component of hepatic stellate cells (HSCs) and the type III collagen they produce was evaluated by immunohistochemistry. Host PEDF inhibited the total area of liver metastasis and the frequency of macrometastases (diameter >200μm) but did not affect the total number of metastases. Mice expressing PEDF exhibited significantly lower MVD and less type III collagen production in metastases. An increase in activated HSCs was seen in the absence of PEDF, but this result was not statistically significant. In conclusion, host PEDF inhibits the progression of hepatic metastases in a mouse model of UM, and loss of PEDF is accompanied by an increase in tumor blood vessel density and type III collagen.
Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains sub-populations of proliferative and invasive cells that coordinately drive tumor growth, progression and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte endfeet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GBM cell growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent brain cancer.
BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. Methods: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. Results: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. Conclusion: We report the mutational spectrum of BAFopathies in an ES cohort. A genotypedriven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Glioblastoma (GBM) is a malignant brain cancer that contains sub-populations of highly invasive tumor cells that drive progression and recurrence after surgery and radiochemotherapy. The exact mechanisms that enable GBM cells to disperse from the main tumor mass and navigate throughout the brain microenvironment remain largely unknown. As a result, there is a lack of effective strategies to block cancer cell invasive growth in primary and recurrent GBM. Here we report that hepatocyte cell adhesion molecule (hepaCAM), which is normally expressed in perivascular astrocytes, plays central roles in controlling the invasive growth features of GBM cells. Genetically targeting HEPACAM induces a transition from GBM cell proliferation/self-renewal to invasion. Increased invasion is due, in part, to an activation of focal adhesion signaling pathways and enhanced GBM cell adhesion to the extracellular matrix (ECM) in the brain microenvironment. Transcriptional profiling of GBM cells reveals various HEPACAM-regulated genes with links to polarity and invasion. Collectively, these data show that hepaCAM balances ECM adhesion and signaling pathways to control cancer cell proliferation versus invasion in the brain parenchyma. Targeting select components of the hepaCAM pathway may be an effective way to block tumor progression and recurrence in patients with GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.