We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We follow the aggregation framework used by Dokow and Holzman [Aggregation of non-binary evaluations, Advances in Applied Mathematics , 45:4, 487--504, 2010], in which both preference aggregation and judgment aggregation can be cast. We require the aggregation to be independent on each issue, and also supportive, i.e., for every issue, the corresponding component of every aggregator, when applied to a tuple of votes, must take as value one of the votes in that tuple. We prove that, in such a setup, non-dictatorial aggregation of votes in a society of an arbitrary size is possible if and only if either there is a non-dictatorial aggregator for two voters or there is an aggregator for three voters such that, for each issue, the corresponding component of the aggregator, when restricted to two-element sets of votes, is a majority operation or a minority operation. We then introduce a notion of a uniform non-dictatorial aggregator, which is an aggregator such that on every issue, and when restricted to arbitrary two-element subsets of the votes for that issue, it differs from all projection functions. We first give a characterization of sets of feasible voting patterns that admit a uniform non-dictatorial aggregator. After this and by making use of Bulatov’s dichotomy theorem for conservative constraint satisfaction problems, we connect social choice theory with the computational complexity of constraint satisfaction by proving that if a set of feasible voting patterns has a uniform non-dictatorial aggregator of some arity, then the multi-sorted conservative constraint satisfaction problem on that set (with each issue representing a different sort) is solvable in polynomial time; otherwise, it is NP-complete.
We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We require the aggregation to be supportive, i.e. for every issue j the corresponding component fj of every aggregator on every issue should satisfy fj (x1, , . . . , xn) ∈ {x1, , . . . , xn}. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society of some size is possible if and only if either non-dictatorial aggregation is possible in a society of only two members or a ternary aggregator exists that either on every issue j is a majority operation, i.e. the corresponding component
We investigate when non-dictatorial aggregation is possible from an algorithmic perspective. We consider the setting in which the members of a society take a position on a fixed collection of issues, where for each issue several different alternatives are possible, but the combination of choices must belong to a given set X of allowable voting patterns. Such a set X is called a possibility domain if there is an aggregator that is non-dictatorial, operates separately on each issue, and returns values among those cast by the society on each issue. We design a polynomialtime algorithm that decides, given a set X of voting patterns, whether or not X is a possibility domain. Furthermore, if X is a possibility domain, then the algorithm constructs in polynomial time such a non-dictatorial aggregator for X. We also design a polynomial-time algorithm that decides if X is a uniform possibility domain, that is, a possibility domain for which non-dictatorial aggregation is possible, uniformly for all issues and when restricted to any two positions for each issue. As in the case of possibility domains, the algorithm also constructs in polynomial time a uniform non-dictatorial aggregator, if one exists.
Moser and Tardos (2010) gave an algorithmic proof of the lopsided Lovász local lemma (LLL) in the variable framework, where each of the undesirable events is assumed to depend on a subset of a collection of independent random variables. For the proof, they define a notion of a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.