Different epigenetic mechanisms provide biological organisms with the ability to adjust their physiology and/or morphology and adapt to a wide range of challenges posed by their environments. In particular, one type of epigenetic process, in which hormone concentrations are linked to the regulation of hormone receptors, has been shown to have implications for behavioral development. In this paper, taking inspiration from these biological processes, we investigate whether an epigenetic model based on the concept of hormonal regulation of receptors can provide a similarly robust and general adaptive mechanism for autonomous robots. We have implemented our model using a Koala robot, and tested it in a series of experiments in six different environments with varying challenges to negotiate. Our results, including the emergence of varied behaviors that permit the robot to exploit its current environment, demonstrate the potential of our epigenetic model as a general mechanism for adaptation in autonomous robots.
Epigenetic adaptation provides biological organisms with the ability to adjust their physiology and/or morphology in order to meet some of the challenges posed by their environment. Recent research has suggested that this process may be controlled by hormones. In this paper, we present a model that allows an autonomous robot to develop its systems in accordance with the environment it is currently situated in. Experiments have been undertaken in multiple environments with different challenges and niches to negotiate. We have so far seen encouraging results and the emergence of unique behaviours tailored to exploiting its current environment. ?? 2013 IEEE
Using an epigenetic model, in this paper we investigate the importance of sensorimotor experiences and environmental conditions in the emergence of more advanced cognitive abilities in an autonomous robot. We let the robot develop in three environments affording very different (physical and social) sensorimotor experiences: a "normal," standard environment, with reasonable opportunities for stimulation, a "novel" environment that offers many novel experiences, and a "sensory deprived" environment where the robot has very limited chances to interact. We then (a) assess how these different experiences influence and change the robot's ongoing development and behavior; (b) compare the said development to the different sensorimotor stages that infants go through; and (c) finally, after each "baby" robot has had time to develop in its environment, we recreate and assess its cognitive abilities using different well-known tests used in developmental psychology such as the violation of expectation (VOE) paradigm. Although our model was not explicitly designed following Piaget's or any other developmental theory, we observed, and discuss in the paper, that relevant sensorimotor experiences, or the lack of, result in the robot going through unforeseen developmental "stages" bearing some similarities to infant development, and could be interpreted in terms of Piaget's theory.
Hormones are known to play a critical role in modulating the behaviour and development of organisms when confronted with different environment challenges. In this paper we present a biologically plausible hormonal mechanism that allows an autonomous robot to interact appropriately with novel objects and interactions depending upon both its current internal state and its past experiences. In our experiments, robots that had been exposed to negative experiences during their initial developmental phase displayed withdrawn behaviour and were less likely to explore new objects and environments, or to engage with a human caregiver. In contrast, robots with a positive upbringing showed much greater levels of outgoing behaviour such as exploration and social interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.